Seismic Design Criteria for New Steel Moment Frame Buildings

2001 ◽  
Author(s):  
Thomas A. Sabol
Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


2003 ◽  
Vol 19 (2) ◽  
pp. 309-315
Author(s):  
Robert E. Shaw

FEMA-353, Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications, contains numerous provisions related to the materials, details, quality, and inspection of steel moment-frame buildings in seismic regions. These provisions continue to evolve as industry standards and practices are reviewed, modified, and adopted to meet the need for good seismic performance. Those writing project specifications must remain current with new industry developments and standards.


2010 ◽  
Vol 19 (4) ◽  
pp. 421-438 ◽  
Author(s):  
H. Kit Miyamoto ◽  
Amir S. J. Gilani ◽  
Akira Wada ◽  
Christopher Ariyaratana

2012 ◽  
Vol 166-169 ◽  
pp. 640-644
Author(s):  
Qian Zhang ◽  
Ya Feng Yue ◽  
Ergang Xiong

According to lots of documents previously studied, a seismic design method is put forward based on displacement for steel moment frame. This method is established in condition that the yield displacement of steel frame can be determined by its geometrical dimension; then the objective displacement (ultimate displacement) can be determined in light of performance level of the structure, and the corresponding coefficient of ductility can be obtained. Thereafter, the design base shear of steel frame structure can be calculated by the use of reduced elastic spectrum. Thus, the design of stiffness and capacity can be conducted on steel frame structure. The analysis of case study indicates that the displacement-based seismic design method addressed herein is of reasonable safety and reliability, and of operational convenience, which can still realize the seismic design of steel frame structure at different performance levels.


Sign in / Sign up

Export Citation Format

Share Document