Flood Elevation Determinations Using Land Cover Assessments Based on High Spatial Resolution Satellite Remote Sensing Information

2001 ◽  
Author(s):  
Harold E. Johnson, III ◽  
Kathleen M. Trauth ◽  
Janggam Adhityawarma ◽  
R. Lee Peyton ◽  
Aderbal C. Correa
2020 ◽  
Vol 40 (10) ◽  
pp. 1028001
Author(s):  
陈世涵 Chen Shihan ◽  
李玲 Li Ling ◽  
蒋弘凡 Jiang Hongfan ◽  
居伟杰 Ju Weijie ◽  
张曼玉 Zhang Manyu ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.


Author(s):  
B. Liu ◽  
J. Chen ◽  
H. Xing ◽  
H. Wu ◽  
J. Zhang

The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. <br><br> A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. <br><br> Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.


Author(s):  
A.R. As-syakur ◽  
T. Osawa ◽  
IW.S. Adnyana

Remote sensing data with high spatial resolution is very useful to provideinformation about Gross Primary Production (GPP) especially over spatial coverage in theurban area. Most models of ecosystem carbon exchange based on remote sensing data usedlight use efficiency (LUE) model. The aim of this research was to analyze the distributionof annual GPP urban area of Denpasar. Two main satellite data used in this study wereALOS/AVNIR-2 and Aster satellite data. Result showed that annual value of GPP usingALOS/AVNIR-2 varied from 0.130 gC m-2 yr-1 to 2586.181 gC m-2 yr-1. Meanwhile, usingAster the value varied from 0.144 gC m-2 yr-1 to 2595.264 gC m-2 yr-1. The annual value ofGPP ALOS was lower than the value of Aster, because ALOS have high spatial resolutionand smaller interval of spectral resolution compared to Aster. Different land use couldeffect the value of GPP, because the different land use has different vegetation type,distribution, and different photosynthetic pathway type. The high spatial resolution of theremote sensing data is crucial to discriminate different land cover types in urban region.With heterogeneous land cover surface, maximum value of GPP using ALOS/AVNIR-2was smaller than that of Aster, however, the annual mean of GPP value usingALOS/AVNIR-2 was higher than that of Aster.


Sign in / Sign up

Export Citation Format

Share Document