A Mass-Balance, Control-Volume Approach for Estimating Vertical Sediment Flux and Settling Velocity within Dredge Plumes

2007 ◽  
Author(s):  
S. Jarrell Smith ◽  
Carl T. Friedrichs
2020 ◽  
Author(s):  
julien chauchat ◽  
Thibaud Revil-Baudard ◽  
Zhen Cheng ◽  
David Hurther ◽  
Tian-Jian Hsu

<p>In the state-of-the-art for suspended-load modeling it is commonly assumed that the concentration profile results from a balance between a settling flux, in which the settling velocity is considered as equal to its value for a single settling particle in quiescent water, and an upward turbulent flux modeled using a Fickian gradient diffusion approximation. While this model provides a general framework, comparison with experiments reveals that the concentration diffusivity is not equal to the eddy viscosity and a turbulent Schmidt number needs to be introduced. Based on Coleman (1970,1981) data, van Rijn (1984) proposed an empirical model which suggests that the Schmidt number is a decreasing function of W<sub>s</sub>/u<sub>*</sub>. This result is intriguing as it suggests that the turbulent dispersion of sediment concentration is enhanced when the particle’s settling velocity increases relative to the bed friction velocity. Van Rijn suggested that this is due to centrifugal forces that tends to throw inertial particles out of the turbulent vortices leading to an enhanced particle dispersion compared to momentum. In the present contribution, we use high-resolution experimental data and turbulence resolving two-phase flow simulations that directly resolve the turbulent momentum and particle fluxes and the flow turbulence to investigate the different terms appearing on the mass balance mentioned above.  Both the experimental and the numerical results show that the actual turbulent Schmidt number based on the resolved sediment flux is higher than unity meaning that turbulent dispersion efficiency of « heavy particles » is reduced. This contradicts van Rijn’s prediction model of the Schmidt number. One plausible explanation is that the settling velocity of particles is reduced in highly turbulent flows. Using the experimental and numerical results, the actual settling velocity in the turbulent flow is retrieved from the mass balance at steady state. It is found that it is significantly retarded compared with the value in quiescent water (10 to 40%). This result is in good agreement with the one obtained in recent experiments performed in a turbulent grid at KIT (Germany) using the same particles (Akutina et al., 2020). The authors found a settling retardation of 16% for the same turbulent intensities as in the present experiments. The results presented herein completely change the paradigm for turbulent suspension load modeling and open new perspectives on the development of new, physical process-based, parametrizations required for large-scale models. This, of course, will require to extend the proposed methodology to a wider range of flow and sediment conditions.</p>


Geology ◽  
2021 ◽  
Author(s):  
Joel S. Scheingross ◽  
Michael P. Lamb

Waterfall plunge pools experience cycles of sediment aggradation and scour that modulate bedrock erosion, habitat availability, and hazard potential. We calculate sediment flux divergence to evaluate the conditions under which pools deposit and scour sediment by comparing the sediment transport capacities of waterfall plunge pools (Qsc_pool) and their adjacent river reaches (Qsc_river). Results show that pools fill with sediment at low river discharge because the waterfall jet is not strong enough to transport the supplied sediment load out of the pool. As discharge increases, the waterfall jet strengthens, allowing pools to transport sediment at greater rates than in adjacent river reaches. This causes sediment scour from pools and bar building at the downstream pool boundary. While pools may be partially emptied of sediment at modest discharge, floods with recurrence intervals >10 yr are typically required for pools to scour to bedrock. These results allow new constraints on paleodischarge estimates made from sediment deposited in plunge pool bars and suggest that bedrock erosion at waterfalls with plunge pools occurs during larger floods than in river reaches lacking waterfalls.


2013 ◽  
Vol 141 (7) ◽  
pp. 2526-2544 ◽  
Author(s):  
Xi Chen ◽  
Natalia Andronova ◽  
Bram Van Leer ◽  
Joyce E. Penner ◽  
John P. Boyd ◽  
...  

Abstract Accurate and stable numerical discretization of the equations for the nonhydrostatic atmosphere is required, for example, to resolve interactions between clouds and aerosols in the atmosphere. Here the authors present a modification of the hydrostatic control-volume approach for solving the nonhydrostatic Euler equations with a Lagrangian vertical coordinate. A scheme with low numerical diffusion is achieved by introducing a low Mach number approximate Riemann solver (LMARS) for atmospheric flows. LMARS is a flexible way to ensure stability for finite-volume numerical schemes in both Eulerian and vertical Lagrangian configurations. This new approach is validated on test cases using a 2D (x–z) configuration.


2011 ◽  
Vol 38 (8-9) ◽  
pp. 1027-1029 ◽  
Author(s):  
Gunwoo Kim ◽  
Myung Eun Lee

2014 ◽  
Vol 59 (1) ◽  
pp. 25-40 ◽  
Author(s):  
Jianwei Cheng ◽  
Yi Luo

Abstract Explosions originated from or around the sealed areas in underground coal mines present a serious safety threat. The explosibility of the mine atmosphere depends on the composition of oxygen, combustible and inert gases. In additional, the composition in the inaccessible sealed areas change with time under various factors, such as gases emissions, air leakage, inert gases injected, etc. In order to improve mine safety, in this paper, a mathematical model based on the control volume approach to simulate the atmosphere compositions is developed, and the expanded Coward explosibility triangle diagram is used to assess the mine gas explosion risk. A computer program is developed to carry out the required computations and to display the results. In addition, the USBM explosibility diagram is also included in the program to serve as a double check.


2000 ◽  
Author(s):  
Marcelo J. S. de Lemos ◽  
Marcos H. J. Pedras

Abstract Turbulent flow in a channel, totally and partially filled with a porous medium, is simulated with a proposed turbulence model. Two cases are analyzed, namely clear flow past a porous obstacle and flow through a porous medium having a cavity with a higher porosity. Mean and turbulence quantities were solved within both computational domains using a single numerical technique. The control volume approach was used to discretize the governing equations. In the first case analyzed, the flow penetration into the porous substrate is accompanied by generation of turbulence kinetic energy within the obstacle. In the second geometry, the flow is pushed towards the cavity as porosity increases.


2011 ◽  
Vol 312-315 ◽  
pp. 433-438 ◽  
Author(s):  
Ali Akbar Abbasian Arani ◽  
Mostafa Mahmoodi ◽  
Meysam Amini

The natural convection in a square cavity with a heated horizontal plate containing a nanofluid (water and Ag) is simulated numerically. The heated plate and vertical walls are maintained at a constant temperature, Th and Tc, while the horizontal walls are adiabatic. The nanofluid is assumed to be incompressible and the flow is considered to be laminar. The continuity, momentum and energy equations written in terms of the primitive variables are discretized using a control volume approach and the SIMPLER algorithm. A parametric study is performed and the effect of the Rayleigh number, the location of the heated plate and the volume fraction of the nanoparticles on the fluid flow and the heat transfer inside the cavity are investigated. The results show that the mean Nusselt number of the vertical walls increases with increasing the volume fraction of the nanoparticles. Moreover, for a constant volume fraction of the nanoparticles, the Nusselt number of the vertical walls decreases substantially as the location of the heated plate varies from top to bottom of the cavity.


Sign in / Sign up

Export Citation Format

Share Document