Mass balance controls on sediment scour and bedrock erosion in waterfall plunge pools

Geology ◽  
2021 ◽  
Author(s):  
Joel S. Scheingross ◽  
Michael P. Lamb

Waterfall plunge pools experience cycles of sediment aggradation and scour that modulate bedrock erosion, habitat availability, and hazard potential. We calculate sediment flux divergence to evaluate the conditions under which pools deposit and scour sediment by comparing the sediment transport capacities of waterfall plunge pools (Qsc_pool) and their adjacent river reaches (Qsc_river). Results show that pools fill with sediment at low river discharge because the waterfall jet is not strong enough to transport the supplied sediment load out of the pool. As discharge increases, the waterfall jet strengthens, allowing pools to transport sediment at greater rates than in adjacent river reaches. This causes sediment scour from pools and bar building at the downstream pool boundary. While pools may be partially emptied of sediment at modest discharge, floods with recurrence intervals >10 yr are typically required for pools to scour to bedrock. These results allow new constraints on paleodischarge estimates made from sediment deposited in plunge pool bars and suggest that bedrock erosion at waterfalls with plunge pools occurs during larger floods than in river reaches lacking waterfalls.

2017 ◽  
Vol 10 (12) ◽  
pp. 4577-4604 ◽  
Author(s):  
Charles M. Shobe ◽  
Gregory E. Tucker ◽  
Katherine R. Barnhart

Abstract. Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock–alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.


2017 ◽  
Author(s):  
Charles M. Shobe ◽  
Gregory E. Tucker ◽  
Katherine R. Barnhart

Abstract. Models of landscape evolution by river erosion are often either transport-limited (sediment is always available, but may or may not be transportable) or detachment-limited (sediment must be detached from the bed, but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. We present SPACE (Stream Power with Alluvium Conservation and Entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as "bedrock" rivers) flow over a partially alluviated bed. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for channel slope, alluvium thickness, and sediment flux, and show that SPACE matches predicted behavior in detachment-limited, transport-limited, and mixed conditions. We provide an example of landscape evolution modeling in which SPACE is coupled with hillslope diffusion, and demonstrate that SPACE provides an effective framework for simultaneously modeling 2-D sediment transport and bedrock erosion.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 938 ◽  
Author(s):  
Zhengchen Zang ◽  
Z. George Xue ◽  
Kehui Xu ◽  
Samuel J. Bentley ◽  
Qin Chen ◽  
...  

We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter, and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event, after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity tests were carried out to examine the response of sediment dynamics to high and low river discharge, respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely affect sediment balance in waters around the delta. The impact from decreased fluvial input was minimum on the sandy shoals ~100 km west of the Mississippi Delta, where deposition of fluvial sediments was highly affected by winds.


2021 ◽  
Author(s):  
Mara Orescanin ◽  
Tyonna McPherson ◽  
Paul Jessen

<p>The Carmel River runs 58 km from the Santa Lucia Mountains through the Carmel Valley eventually entering a lagoon at Carmel River State Beach near Carmel, California, USA. During the dry summer months, the lagoon is closed, with no connection to the coastal ocean.  However, during the wet winter months, the river often breaches through the lagoon allowing water to freely flow between the river and Carmel Bay. Sediment transport, in part owing to river discharge and in part owing to ocean forcing (tides and waves), contributes heavily to whether the lagoon is open or closed: when there are low flow conditions, waves and tides can decrease flow rates in the breach, allowing sediment to settle. The sediment budget is expected to be a closed system, owing to the rocky headlands and long-term stability (no yearly regression or transgression) of the shoreline, despite managed attempts to control breach and closure timing. However, it is currently unknown 1) how velocity profiles evolve during breaching, and 2) how much sediment moves during such an event. The hypothesis is that the breach mouth can completely disappear and re-emerge over a single breach-closure cycle, leading to meter-scale daily accretion and erosion rates of berm height if berm elevation is significantly lower than the expected steady-state berm height. Furthermore, it is hypothesized that during active breaching, discharge rates through the breach channel are larger than upstream river discharge rates owing to elevated water levels within the back lagoon. This study uses a RiverSurveyor M9 Acoustic Doppler Profiler to measure outflow discharge and GPS topographic surveys to quantify elevation changes. A velocity profile can be built which will estimate the sediment transport potential within the breach. The information obtained will help identify and better understand the river discharge thresholds which contribute to frequent breaching as well as estimates of morphological evolution during breaching, which are currently unknown, and can assist in determining likelihood of successful managed breaching and closure events. </p>


2018 ◽  
Author(s):  
Tian Zhao ◽  
Qian Yu ◽  
Yunwei Wang ◽  
Shu Gao

Abstract. Being a widespread source-to-sink sedimentary environment, the fine-grained dispersal system (FGDS) features remarkably high sediment flux, interacting closely with local morphology and ecosystem. Such exceptional transport is believed to be associated with changes in bedform geometry, which further demands theoretical interpretation. Using van Rijn (2007a) bed roughness predictor, we set up a simple numerical model to calculate sediment transport, classify sediment transport behaviors into dune and (mega-)ripple dominant regimes, and discuss the causes of the sediment transport regime shift linked with bedform categories. Both regimes show internally consistent transport behaviors, and the latter, associated with FGDSs, exhibits considerably higher sediment transport rate than the previous. Between lies the coexistence zone, the sediment transport regime shift accompanied by degeneration of dune roughness, which can considerably reinforce sediment transport and is further highlighted under greater water depth. This study can be applied to modeling of sediment transport and morphodynamics.


1984 ◽  
Vol 1 (19) ◽  
pp. 91 ◽  
Author(s):  
Ichiro Deguchi ◽  
Toru Sawaragi

Time and spatial variations of sediment concentration of both bed load and suspended load in the process of two-dimensional beach deformation were investigated experimentally. At the same time, the relation between the velocities of water-particle and sediment migration was analyzed theoretically. By using those results,a net rate of on-offshore sediment_ transport in the process of two-dimensional model beach deformation qf was calculated on the basis of sediment flux. It is found that Qf coincides fairly well with .the net rate of on-offshore sediment transport calculated from the change of water depth.


Author(s):  
G. T. Nwaila ◽  
J. E. Bourdeau ◽  
Z. Jinnah ◽  
H. E. Frimmel ◽  
G. M. Bybee ◽  
...  

Abstract Within the eastern portion of the Carletonville gold field, the gold- and uranium-rich Carbon Leader reef of the Central Rand Group (Witwatersrand Supergroup) is truncated by an erosion channel. This channel is asymmetrical and lenticular in shape, measuring 150 to 180 m in width and up to 100 m in depth. High-resolution seismic data show that the erosion channel cuts from the Carbon Leader reef into all older units of the Central Rand Group down to the Roodepoort Formation of the underlying West Rand Group. A total of seven bore-holes were drilled into the channel, revealing that it is composed of quartzite at its base (9 m thick), overlain by deformed (lower) and laminated (upper) chloritoid-bearing shale (21 m thick) and quartzite (18 m thick). The Carbon Leader reef is highly enriched in gold (5–40 g/t Au), whereas the gold tenor of the erosion channel fill is in general much lower (<1 g/t Au), although locally grades of as much as 3.8 g/t Au are reached. Detailed seismic, sedimentological, and petrographic analyses revealed that the channel was filled with locally sourced sediments from the Main Formation. A closed-system mass balance further demonstrates that gold in the erosion channel could have been entirely sourced from the Carbon Leader reef. Sediment load played a crucial role in the distribution of gold in the channel, thus supporting a stratigraphically controlled modified placer model for the origin of gold in the Carbon Leader reef.


2000 ◽  
Vol 46 (154) ◽  
pp. 491-498 ◽  
Author(s):  
Alun Hubbard ◽  
Ian Willis ◽  
Martin Sharp ◽  
Douglas Mair ◽  
Peter Nienow ◽  
...  

AbstractAn indirect methodology for determining the distribution of mass balance at high spatial resolution using remote sensing and ice-flow modelling is presented. The method, based on the mass-continuity equation, requires two datasets collected over the desired monitoring interval: (i) the spatial pattern of glacier surface-elevation change, and (ii) the mass-flux divergence field. At Haut Glacier d’Arolla, Valais, Switzerland, the mass-balance distribution between September 1992 and September 1993 is calculated at 20 m resolution from the difference between the pattern of surface-elevation change derived from analytical photogrammetry and the mass-flux divergence field determined from three-dimensional, numerical flow modelling constrained by surface-velocity measurements. The resultant pattern of mass balance is almost totally negative, showing a strong dependence on elevation, but with large localized departures. The computed distribution of mass balance compares well (R2 = 0.91) with mass-balance measurements made at stakes installed along the glacier centre line over the same period. Despite the highly optimized nature of the flow-modelling effort employed in this study, the good agreement indicates the potential this method has as a strategy for deriving high spatial and temporal-resolution estimates of mass balance.


Sign in / Sign up

Export Citation Format

Share Document