Selecting the Best Pipeline Route Based on Facts Not Feelings

Author(s):  
Drew Hardin ◽  
Glenn Bridges ◽  
Don Rundell
Keyword(s):  
Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.


1992 ◽  
Vol 25 (9) ◽  
pp. 211-216
Author(s):  
A. Akyarli ◽  
Y. Arisoy

As the wave forces are the function of the wave height, period and the angle between the incoming wave direction and the axis of the discharge pipeline, the resultant wave force is directly related to the alignment of the pipeline. In this paper, a method is explained to determine an optimum pipeline route for which the resultant wave force becomes minimum and hence, the cost of the constructive measures may decrease. Also, the application of this method is submitted through a case study.


Author(s):  
S. Raza Wasi ◽  
J. Darren Bender

An interesting, potentially useful, and fully replicable application of a spatially enabled decision model is presented for pipeline route optimization. This paper models the pipeline route optimization problem as a function of engineering and environmental design criteria. The engineering requirements mostly deal with capital, operational and maintenance costs, whereas environmental considerations ensure preservation of nature, natural resources and social integration. Typically, pipelines are routed in straight lines, to the extent possible, to minimize the capital construction costs. In contrast, longer pipelines and relatively higher costs may occur when environmental and social considerations are part of the design criteria. Similarly, much longer pipelines are less attractive in terms of capital costs and the environmental hazard associated with longer construction area. The pipeline route optimization problem is potentially a complex decision that is most often undertaken in an unstructured, qualitative fashion based on human experience and judgement. However, quantitative methods such as spatial analytical techniques, particularly the least-cost path algorithms, have greatly facilitated automation of the pipeline routing process. In the past several interesting studies have been conducted using quantitative spatial analytical tools for finding the best pipeline route or using non-spatial decision making tools to evaluate several alternates derived through conventional route reconnaissance methods. Most of these studies (that the authors are familiar with) have concentrated on integrating multiple sources of spatial data and performing quantitative least-cost path analysis or have attempted to make use of non-spatial decision making tools to select the best route. In this paper, the authors present a new framework that incorporates quantitative spatial analytical tools with an Analytical Hierarchical Process (AHP) model to provide a loosely integrated but efficient spatial Decision Support System (DSS). Specifically, the goal is to introduce a fully replicable spatial DSS that processes both quantitative and qualitative information, balances between lowest-cost and lowest-impact routes. The model presented in this paper is implemented in a four step process: first, integration of multiple source data that provide basis for engineering and environmental design criteria; second, creation of several alternate routes; third, building a comprehensive decision matrix using spatial analysis techniques; and fourth, testing the alternative and opinions of the stakeholder groups on imperatives of AHP model to simplify the route optimization decision. The final output of the model is then used to carry out sensitivity analysis, quantify the risk, generate “several what and if scenarios” and test stability of the route optimization decision.


Polar Record ◽  
1978 ◽  
Vol 19 (120) ◽  
pp. 282-285
Author(s):  
J. Coombs ◽  
C. Madden
Keyword(s):  

2021 ◽  
Author(s):  
Formentini Federico ◽  
Luigi Foschi ◽  
Filippo Guidi ◽  
Ester Iannucci ◽  
Lorenzo Marchionni ◽  
...  

Abstract This paper is based on the experience made during the design and installation of an offshore pipeline recently completed in Indonesia, where a 24” subsea production pipeline (16km long in 70m water depth) was found susceptible during design to lateral buckling. To limit the development of excessive deformation within the acceptance criteria, a mitigation strategy based on interacting planned buckles has been adopted installing three Buckle Initiators (BI) along the pipeline route. Buckling is a well understood phenomenon. However, this project was characterized by major uncertainties mainly driven by soil characterization, soil-pipe interaction, seabed mobility and soil liquefaction. These uncertainties have played a key role in the in-service buckling design. A lot of engineering efforts have been spent to go through the screening between alternative concepts, the validation of the chosen solution and its detailed engineering phase. This paper discusses the main contributing factors and how the uncertainties have been tackled. The Buckle Initiators are quite large and heavy structures with two main bars: the first ramp has an inclination equal to 30° and the pipeline has been laid on it; a second horizontal ramp was used as sleeper to accommodate the development of the lateral buckle during the operating life. A rotating arm was also used to restrict the pipeline lay corridor on the inclined ramp guaranteeing a combined horizontal and vertical out-of-straightness in the as-laid configuration. The rotating arm has been released as soon as the pipeline passed the BI permitting the pipeline to slide freely over the two BI ramps. The foundation of the Buckle Initiator has a footprint surface of about 60m2 guaranteeing its stability for different soil types characterizing the three installation areas. This more complex solution was preferred with respect to a typical sleeper to increase the robustness of the system in terms of buckle mobilization. The design of the Buckle Initiator was a multidisciplinary activity where many novel concepts were developed and many issues were faced (i.e. pipeline laying on an inclined sleeper, anti-scouring system, foundation design, etc.). The Buckle Initiator design was focused on structural calculations against design loads expected during temporary and operating conditions, geotechnical verifications, installation analysis, pipeline configuration and fatigue assessment. This paper presents all main engineering aspects faced during design and first feedbacks from field after the pipeline installation.


Author(s):  
Bruno Reis Antunes ◽  
Rafael Familiar Solano ◽  
Alexandre Hansen

Buckle formation process is a key subject for the design of subsea pipelines laid on the seabed and operating under high pressure and high temperature (HP/HT) conditions. When the controlled lateral buckling methodology is adopted triggers are placed along pipeline route in order to increase the buckle formation probability in specific locations, sharing pipeline expansion between these sites and reducing the level of stress and strain in each buckle. Despite of its importance, buckle formation process is influenced by several parameters such as the seabed bathymetry, engineered triggers, lateral out-of-straightness (OOS) and pipe-soil interaction. While the first two items above can be defined with reasonable accuracy at previous stages of design, lateral OOS will only be known with tolerable confidence after pipeline installation. The level of uncertainty related to pipe-soil interaction is also considerable since pipeline embedment and friction factors are estimated using equations that include empirical correlations and field collected data. In addition these parameters are influenced by the installation process. Due to these uncertainties, conservative premises are usually assumed in order to obtain a robust pipeline thermo-mechanical design. After pipeline installation and/or start of operation an investigation can be performed in order to confirm the assumptions considered in the design. This paper presents a comparison of premises adopted during design stage of a pipeline based on the controlled lateral buckling methodology and the feedback obtained with the post-lay survey performed. After a brief introduction, pipeline embedment, global buckling at crossings, lateral OOS and sleepers’ height are some of the subjects addressed. Finally, conclusions and recommendations are presented in order to support future similar projects.


2015 ◽  
pp. 25
Author(s):  
V. R. Belyaev ◽  
E. F. Zorina ◽  
M. V. Veretennikova ◽  
S. N. Kovalev ◽  
I. P. Nikol'skaya ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document