Tangguh Project: Multidisciplinary and Challenging Design of a Novel Concept of Buckle Initiator

2021 ◽  
Author(s):  
Formentini Federico ◽  
Luigi Foschi ◽  
Filippo Guidi ◽  
Ester Iannucci ◽  
Lorenzo Marchionni ◽  
...  

Abstract This paper is based on the experience made during the design and installation of an offshore pipeline recently completed in Indonesia, where a 24” subsea production pipeline (16km long in 70m water depth) was found susceptible during design to lateral buckling. To limit the development of excessive deformation within the acceptance criteria, a mitigation strategy based on interacting planned buckles has been adopted installing three Buckle Initiators (BI) along the pipeline route. Buckling is a well understood phenomenon. However, this project was characterized by major uncertainties mainly driven by soil characterization, soil-pipe interaction, seabed mobility and soil liquefaction. These uncertainties have played a key role in the in-service buckling design. A lot of engineering efforts have been spent to go through the screening between alternative concepts, the validation of the chosen solution and its detailed engineering phase. This paper discusses the main contributing factors and how the uncertainties have been tackled. The Buckle Initiators are quite large and heavy structures with two main bars: the first ramp has an inclination equal to 30° and the pipeline has been laid on it; a second horizontal ramp was used as sleeper to accommodate the development of the lateral buckle during the operating life. A rotating arm was also used to restrict the pipeline lay corridor on the inclined ramp guaranteeing a combined horizontal and vertical out-of-straightness in the as-laid configuration. The rotating arm has been released as soon as the pipeline passed the BI permitting the pipeline to slide freely over the two BI ramps. The foundation of the Buckle Initiator has a footprint surface of about 60m2 guaranteeing its stability for different soil types characterizing the three installation areas. This more complex solution was preferred with respect to a typical sleeper to increase the robustness of the system in terms of buckle mobilization. The design of the Buckle Initiator was a multidisciplinary activity where many novel concepts were developed and many issues were faced (i.e. pipeline laying on an inclined sleeper, anti-scouring system, foundation design, etc.). The Buckle Initiator design was focused on structural calculations against design loads expected during temporary and operating conditions, geotechnical verifications, installation analysis, pipeline configuration and fatigue assessment. This paper presents all main engineering aspects faced during design and first feedbacks from field after the pipeline installation.

2017 ◽  
Vol 57 (2) ◽  
pp. 603
Author(s):  
Steve Henzell ◽  
Fiona Read

The Casino offshore pipeline required inspection to demonstrate the integrity of the pipeline and allow the operating life of the pipeline to be extended. There were numerous challenges in performing a conventional internal pipeline inspection which would have required diver operations to install and operate subsea pig launchers. Two alternative inspection methods were used to inspect the high priority sections of the pipeline, at the pipeline tees and in the horizontal directionally drilled (HDD) section of pipeline at the coastline crossing.The pipeline tees and well flowlines were inspected using an external magnetic flux inspection tool deployed by remotely operated vehicle (ROV), to test for top-of-line corrosion. Bi-directional pigging from the onshore valve station, offshore for 30 km using gas from the host gas plant and then return to the shore using gas from the offshore wells allowed for inspection of the HDD pipeline with a total of 10 bi-direction pig runs completed. The pig position was accurately predicted by monitoring the operating conditions of the pipeline and confirmed by displacement past the subsea well closest to shore (Casino 5). The novel pigging methods brought significant benefits for cost, schedule and reduced EHS exposure by avoiding diver operations. The cost of the overall inspection program was less than 25% of the conventional inspection methods and was achieved a year earlier than if a dive support vessel (DSV) had been mobilised. The bi-directional pigging campaign proved to be highly successful.


Author(s):  
Rafael Familiar Solano ◽  
Bruno Reis Antunes ◽  
Alexandre Santos Hansen

Recently Petrobras has been developing a production module of Roncador field through the P-52 platform in the Campos Basin, offshore Brazil. This platform is a floating production facility located in deep water and was tied back to the PRA-1 platform in shallow water by an 18-inch pipeline in order to export the oil production. This pipeline operates under high pressure and high temperature (HP/HT) conditions and was laid on the seabed. As a result of the extreme operating conditions, this pipeline is highly susceptible to lateral buckling and a buckle initiation strategy based on triggers to control the buckling behavior was designed. Thus sleepers and distributed buoyancies were designed and installed along the pipeline route. In addition to the buckles at the triggers, some additional, on-bottom, buckles were assessed in order not to compromise the design strategy. In recent geophysical data surveys carried out along the route length with the pipeline in operation, both engineered and on-bottom buckles were identified. This paper aims to present the thermo-mechanical design of the P-52 oil export pipeline, performing a comparison between some results obtained in design and observed during operation. Thus this paper intends to evaluate the pipeline as-built plus the operational pipeline configurations, and to assess the robustness of the design strategy applied regarding lateral buckling behavior.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


Author(s):  
P. Pennacchi ◽  
P. Borghesani ◽  
S. Chatterton ◽  
A. Vania

Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called “residual order spectrogram”, i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.


2018 ◽  
Vol 33 ◽  
pp. 02015
Author(s):  
Alexey Mylnik ◽  
Vladimir Mylnik ◽  
Elena Zubeeva ◽  
Olga Mukhamedzhanova

The article considers design, construction and operation features of high-rise facilities. The analysis of various situations, that come from improper designing, construction and operation of unique facilities, is carried out. The integrated approach is suggested, when the problems of choosing acceptable constructional solutions related to the functional purpose, architectural solutions, methods of manufacturing and installation, operating conditions for unique buildings and structures are being tackled. A number of main causes for the emergency destruction of objects under construction and operation is considered. A number of measures are proposed on the basis of factor classification in order to efficiently prevent the situations, when various negative options of design loads and emergency impacts occur.


2021 ◽  
Vol 2130 (1) ◽  
pp. 012003
Author(s):  
P Lonkwic ◽  
T Krakowski ◽  
H Ruta

Abstract The systems that monitor individual components of machines and devices are under constant development. The ability to detect damages at an early stage allows failures to be prevented, so any uncontrolled downtime can be predicted in a controlled manner. Continuous monitoring of technical condition is an activity that also helps to reduce the losses due to equipment failures. However, not all areas can be monitored continuously. Such areas include lift guides where wear and tear can occur naturally, i.e. through abrasion of the material layer due to interaction with moving guide shoes or after emergency braking. Emergency braking causes local damages to the guide through plastic deformation of its surface resulting from indentation of the knurled roller of the brake. Such places are cleaned mechanically, which results in local reduction of the cross-sectional area. In such a case, it is difficult to continuously assess the technical condition of guides due to the prevailing operating conditions. Therefore, a concept of a head enabling assessment of the technical condition of guides at every stage of their operation has been developed. This article presents the novel concept of a magnetic head used for assessing the technical condition of lift guide rails that are the running track of lifting equipment. The initial tests were performed on the original test setup. The concept of the developed measuring head was verified for correct operation on specially prepared flat bars with holes. The results obtained in the form of laboratory tests proved that the proposed measuring head concept can be applied to the measurements under real conditions.


2021 ◽  
Author(s):  
Giuseppe Blasioli ◽  
Furio Marchesani ◽  
Maurizio Badalini ◽  
Vincenzo Luci ◽  
Tove Bekkeheien ◽  
...  

Abstract The transport of CO2 through offshore pipelines is one of the last business that the Operators are beginning to face, in line with the coming needs for climate change mitigations. The scenario for CO2 Capture, Transport and Storage anticipates capture and treatment at local plants, the transportation by ships in a liquid phase at low temperatures (close to −30 °C) to a terminal for the following offshore submarine transportation in a pipeline up to an injection well, for the final (and permanent) storage underground. In order to optimize the operating costs for CO2 transport via pipeline, and to reduce energy consumptions, no heating is applied from ship to pipeline inlet. In such case, the pipeline will reach approximately a temperature of −30 °C in the initial landfall section. The design of the offshore pipeline subject to this operating conditions, very cold fluid inside and a sea water temperature slightly over 0°C outside (North Sea), must face the possibility of ice formation around the pipe. For the Northern Lights project, this possibility has been analyzed and the HDD (Horizontal Directional Drilling) at landfall resulted the only section where the ice formation could jeopardize the pipeline integrity. Detailed assessment for both normal operating conditions and contingency cases has been performed. In the former case, a steady state thermal analysis with analytical method (thermal resistances) has been applied to calculate both the longitudinal, along the pipeline axis, and radial temperature profile: all the water inside the HDD freezes. Therefore, a water circulation system has been studied to prevent the ice formation. The pumping system required to ensure enough water flow has been dimensioned considering pressure losses inside the HDD. Power consumption in the order of 3 kW is expected. The breakdown of the pumps has been analyzed in order to determine the available time before the sea water freeze inside the HDD obstructing any circulation. A transient analysis has been carried out simulating the temperature after water circulation arrest. Both analytical and Finite Element Model have been used to calculate the transient process causing water freezing.


2011 ◽  
Vol 51 (2) ◽  
pp. 697
Author(s):  
Michael Clark ◽  
John Claypool

Oil companies, partnerships and entities developed for the exploration and/or production of hydrocarbons typically invest for a reasonably certain period of time, with the assets projected to have little or no value at the end of their life cycle. Historically, production facilities were decommissioned as cost effectively as possible, with limited consideration of the cost of this practice being factored into the initial costs or operating budgets, and the salvage value of the scrap metal was applied to cover the cost of the demolition. Today, most oil and gas producers are required to account for the estimated future cost of dismantling and removing facilities and equipment, as well as restoring land to its previous condition. The estimated costs for future dismantling, removal, and restoration are different to other costs associated with the acquisition and use of productive assets. The impact of potential environmental expenses associated with these practices typically occurs after an asset has ceased production. Planning for environmental costs for asset retirement obligations (AROs) is ideally conducted during the asset's operating life. This is so that compliance costs and other operating expenses are recorded consistently in conformance with accounting policies and regulations. Tentatively identified AROs include: asbestos, batteries, PCB transformers, underground or above ground storage tanks, well abandonment, waste impoundments, mercury, and other components of an active producing facility. Operators need to identify specific performance requirements that may impose obligations on their organisation. Federal, state and local requirements need be considered, as they apply to specific operating conditions.


Author(s):  
Ritesh A. Khire ◽  
Anoop A. Mullur ◽  
Achille Messac

Flexible systems maintain a high performance level under changing operating conditions or design requirements. Flexible systems acquire this powerful feature by allowing critical aspects of their design con guration to change during the operating life of the product or system. In the design of such systems, designers are often required to make critical decisions regarding the exible and the non-exible aspects of the design con guration. We propose an optimization based methodology to design exible systems that allows a designer to effectively make such critical decisions. The proposed methodology judiciously generates candidate optimal design versions of the exible system. These design versions are evaluated using multiobjective techniques in terms of the level of exibility and the associated penalty. A highly exible system maintains optimal performance under changing operating conditions, but could result in increased cost and complexity of operation. The proposed methodology provides a systematic approach for incorporating designer preferences and selecting the most desirable design version — a feature absent in several recently proposed exible system design frameworks. The developments of this paper are demonstrated with the help of a exible three-bar-truss design example.


Author(s):  
Oleg Testoni ◽  
Sampada Bodkhe ◽  
Paolo Ermanni ◽  
Andrea Bergamini

Abstract In this work, we present a novel concept of adaptive friction damper based on electrostatic adhesion and we characterize its performance under quasi-static conditions. The concept is based on a stack of circular electrodes structurally coupled to different ends of the damper, separated by a thin dielectric film and hinged around a common axle. When an electric potential is applied, the electrodes experience an attractive force, which is used to control the transfer of shear stress between electrodes and thus the resistive torque of the assembly and the amount of energy dissipated. However, imperfections on the contact surfaces and air gaps have a strong detrimental effect on the resistive torque. A prototype of the damper was manufactured and the resistive torque was measured as a function of applied voltage. Theoretical and experimental results were compared to estimate the average thickness of the air gap. The surface roughness of the electrodes and of the dielectric was measured before and after the mechanical test. Moreover, the surface of an entire electrode was scanned to measure its planarity. Then, the results were compared with the value of the air gap previously estimated. The maximum resistive torque measured was constant over five actuation cycles for constant values of the voltage applied and, as expected, increased quadratically with the voltage. The estimated value of the air gap amounted to 38 μm. Both the electrodes and the dielectric showed an increase in average surface roughness after the mechanical test; however, the surface roughness was lower than 1 μm in both cases and could not justify the estimated air gap. On the other hand, we observed a large inhomogeneity in the planarity of the electrode, which was comparable with the thickness of the air gap previously estimated. The results obtained demonstrated the possibility to adapt the resistive torque of the damper using an electrical input and proved the feasibility of the concept. Further work has to focus on the design of the electrodes and on the operating life of the damper. We envisage that the concept could replace traditional, semi-active dampers in automotive or in aerospace applications.


Sign in / Sign up

Export Citation Format

Share Document