Water Loss Levels from Transmission Mains in Urban Environments

Author(s):  
Cliff Jones ◽  
Kevin Laven
F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 274 ◽  
Author(s):  
Amy Heim ◽  
Jeremy Lundholm

Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect ofCladonialichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, theCladoniamodules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, theCladoniamodules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 274 ◽  
Author(s):  
Amy Heim ◽  
Jeremy Lundholm

Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect ofCladonialichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, theCladoniamodules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, theCladoniamodules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.


Author(s):  
Michael T. Postek

Silicon occurs naturally in plants in the form of its hydrated oxide (SiO2.nH2O) commonly called silica. Silica has been shown to be a necessary element in the normal development of many plants, playing an array of roles including strengthening, protection, and reduction of water loss. Deposition of silica in various portions of the plant body, especially the leaves, may also be viewed as a way for the plant to dispose of any excess silica taken up beyond that necessary for normal metabolism.Studies of this “opaline” silica have thus far been limited to species of the Cyperaceae and Gramineae known to possess significant quantities of silica. Within the Magnoliaceae, certain “glistening” idioblast cells at the foliar veinlet termini and vein sheaths of Magnolia grandiflora (1) have been suspected to be siliceous in nature.


2014 ◽  
Author(s):  
Chrono Nu ◽  
Katie Mullin ◽  
Hailey Edwards ◽  
Kailey Kornhauser ◽  
Russell Costa ◽  
...  

TERRITORIO ◽  
2020 ◽  
pp. 148-163
Author(s):  
Luca Fondacci

In the 1970s, the fragile historical centre of the city of Perugia was a key area where the binomial of sustainable mobility and urban regeneration was developed and applied. At the turn of the xxi century, the low carbon automatic people-mover Minimetrò broadened that application from the city's historical centre to the outskirts, promoting the enhancement of several urban environments. This paper is the outcome of an investigation of original sources, field surveys and direct interviews, which addresses the Minimetrò as the backbone of a wide regeneration process which has had a considerable impact on the economic development of a peripheral area of the city which was previously devoid of any clear urban sense. The conclusion proposes some solutions to improve the nature of the Minimetrò as an experimental alternative means of transport.


Sign in / Sign up

Export Citation Format

Share Document