scholarly journals Cladonia lichens on extensive green roofs: evapotranspiration, substrate temperature, and albedo

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 274 ◽  
Author(s):  
Amy Heim ◽  
Jeremy Lundholm

Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect ofCladonialichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, theCladoniamodules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, theCladoniamodules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.

F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 274 ◽  
Author(s):  
Amy Heim ◽  
Jeremy Lundholm

Green roofs are constructed ecosystems that provide ecosystem services in urban environments. Shallow substrate green roofs subject the vegetation layer to desiccation and other environmental extremes, so researchers have evaluated a variety of stress-tolerant vegetation types for green roof applications. Lichens can be found in most terrestrial habitats.  They are able to survive extremely harsh conditions, including frequent cycles of desiccation and rehydration, nutrient-poor soil, fluctuating temperatures, and high UV intensities. Extensive green roofs (substrate depth <20cm) exhibit these harsh conditions, making lichens possible candidates for incorporation into the vegetation layer on extensive green roofs.  In a modular green roof system, we tested the effect ofCladonialichens on substrate temperature, water loss, and albedo compared to a substrate-only control. Overall, theCladoniamodules had significantly cooler substrate temperatures during the summer and significantly warmer temperatures during the fall.  Additionally, theCladoniamodules lost significantly less water than the substrate-only control. This implies that they may be able to benefit neighboring vascular plant species by reducing water loss and maintaining favorable substrate temperatures.


2021 ◽  
Vol 16 (1) ◽  
pp. 17-42
Author(s):  
Lelia Imhof ◽  
Edgardo Suárez ◽  
Natalia Cáceres ◽  
Federico Robbiati ◽  
Cecilia Cáceres ◽  
...  

ABSTRACT Extensive green roofs improve the provision of ecosystem services in urban environments, particularly in semiarid regions. The aim of this paper is to compare their thermal performance during six months between two rooms, one with a green roof and the other with a conventional roof, in Córdoba (Argentina). The room with a green (planting) roof showed a lower inside surface temperature since the beginning of the study than the control room (between 5–6°C of difference). During the selected period, the indicators such as temperature amplitude (the difference between the maximum and the average temperature) and the anti-interference characteristics of the layers to the outdoor air temperature are produced a better performance for the green roof compared to the conventional roof. The pattern of a better performance was consistent across the study for the green roof, characterized by a higher cooling and warming of the roof surface during the day and night, respectively. The green roof was more effective at blocking an upward heat flux during the day and suppressing heat loss during the night. Evaporation, conductive flux and climatic conditions seem to dominate the thermal performance of green roofs in areas with semiarid climate conditions.


2018 ◽  
Vol 78 (11) ◽  
pp. 2247-2255 ◽  
Author(s):  
Wei Zhang ◽  
Xing Zhong ◽  
Wu Che ◽  
Huichao Sun ◽  
Hailong Zhang

Abstract In this study, laboratory-scale green (e.g. living) roof platforms were established to assess the potential use of polluted river sediment in their substrate mixture. The mean runoff retention of the green roof platforms, which contained peat and/or river sediment, after 11 artificial rainfall events was &gt;72%, significantly higher than traditional roofs. However, green roof platforms that had been filled with peat soil showed chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) leaching. Green roofs that had used river sediment showed good leaching control for COD, TN and TP. The cumulative leaching masses from the green roofs contained 30% (COD), 42% (TN) and 47% (TP) as much as the total leaching mass from traditional roofs, and the Cu, Zn, Cd and Pb leaching risk from green roofs when river sediments are used as part of a substrate mixture was relatively low. Despite some nutrient leaching in the initial phase of runoff from the green roofs, river sediment has the potential to be used as a substrate for extensive green roofs.


2016 ◽  
Vol 62 (1-2) ◽  
pp. 44-57 ◽  
Author(s):  
Christine Thuring ◽  
Gary Grant

From its beginnings in Germany in the twentieth century, a thriving extensive green roof industry has become established in many countries in temperate climates. Based upon the success of the industry, and with an expectation that this technology will be adopted in other climates, this review of the ecological research of extensive green roofs aims to evaluate the application of this knowledge. The modern extensive green roof is the product of research in the 1970s by German green roof pioneers; the selection of suitable species from analogue habitats led to green roof vegetation dominated by drought tolerant taxa. The commercial success of extensive green roof systems can be attributed to engineering and horticultural research, to policy mechanisms in some places, and to a market that encourages innovation, and the origins in ecological design are now easily overlooked. Some of the work reviewed here, including the classification of spontaneous roof vegetation into plant communities, is not widely known due to its confinement to the German literature. By re-visiting the history of the extensive green roof and reviewing the ecological research that has contributed to our understanding of it, the intention is, for this paper, to inform those considering green roofs in other climatic regions, to apply an ecologically informed approach in using local knowledge for developing installations that are suited to the bioregion in which they occur. Finally the paper considers some future directions for research and practice.


2021 ◽  
Vol 25 (11) ◽  
pp. 5917-5935
Author(s):  
Elhadi Mohsen Hassan Abdalla ◽  
Vincent Pons ◽  
Virginia Stovin ◽  
Simon De-Ville ◽  
Elizabeth Fassman-Beck ◽  
...  

Abstract. Green roofs are increasingly popular measures to permanently reduce or delay storm-water runoff. The main objective of the study was to examine the potential of using machine learning (ML) to simulate runoff from green roofs to estimate their hydrological performance. Four machine learning methods, artificial neural network (ANN), M5 model tree, long short-term memory (LSTM) and k nearest neighbour (kNN), were applied to simulate storm-water runoff from 16 extensive green roofs located in four Norwegian cities across different climatic zones. The potential of these ML methods for estimating green roof retention was assessed by comparing their simulations with a proven conceptual retention model. Furthermore, the transferability of ML models between the different green roofs in the study was tested to investigate the potential of using ML models as a tool for planning and design purposes. The ML models yielded low volumetric errors that were comparable with the conceptual retention models, which indicates good performance in estimating annual retention. The ML models yielded satisfactory modelling results (NSE >0.5) in most of the roofs, which indicates an ability to estimate green roof detention. The variations in ML models' performance between the cities was larger than between the different configurations, which was attributed to the different climatic characteristics between the four cities. Transferred ML models between cities with similar rainfall events characteristics (Bergen–Sandnes, Trondheim–Oslo) could yield satisfactory modelling performance (Nash–Sutcliffe efficiency NSE >0.5 and percentage bias |PBIAS| <25 %) in most cases. However, we recommend the use of the conceptual retention model over the transferred ML models, to estimate the retention of new green roofs, as it gives more accurate volume estimates. Follow-up studies are needed to explore the potential of ML models in estimating detention from higher temporal resolution datasets.


2011 ◽  
Vol 21 (3) ◽  
pp. 314-322 ◽  
Author(s):  
Erin Schroll ◽  
John G. Lambrinos ◽  
David Sandrock

Extensive green roofs are a challenging environment for most plants, and this has typically limited the available plant palette. However, some functional goals for green roofs such as wildlife habitat require a broader spectrum of plant species from which to choose. In addition, pronounced seasonality in rainfall is a common climatic trait throughout much of the world; yet, few studies have evaluated green roof plant selections or the need for supplemental irrigation in a seasonally dry climate. In a field trial conducted in the Pacific northwestern United States, we evaluated the performance of eight taxa during establishment and under three different water management regimes post establishment: 1) non-irrigated; 2) irrigation based on green roof–specific water conservation guidelines for Portland, OR; or 3) the minimum irrigation required to maintain good plant condition. Plants were regionally available and represented a range of growth forms (succulents, shrubs, grasses, bulbs, and rhizomes) and potential functional attributes (habitat quality, aesthetic quality, and stormwater management proficiency). All eight species had generally high survival over the establishment year, although hardy iceplant (Delosperma cooperi) and common woolly sunflower (Eriophyllum lanatum var. lanatum) experienced some overwinter mortality. Species differed in the timing and absolute amount of growth during establishment. However, when the strong effect of initial size on growth was taken into account using analysis of covariance, there were no remaining differences between species in the relative magnitude of growth during establishment. During the summer following establishment, irrigation regime had significant effects on survival and growth, but these varied across taxa. Irrigation had no effect on survival or growth of the succulents hardy iceplant and ‘Cape Blanco’ broadleaf stonecrop (Sedum spathulifolium) and the bulb small camas (Camassia quamash). For the other taxa, plant survival and growth generally decreased with decreasing irrigation and many species did not survive at all without irrigation. Several species, particularly the grass roemer's fescue (Festuca idahoensis var. roemeri) and the shrub ‘Lasithi’ cretan rockrose (Cistus creticus ssp. creticus) suffered aesthetically under low irrigation, partly reflecting adaptive responses to drought stress. Weed pressure was high on bare substrate and was enhanced by irrigation, but weed pressure was negligible following canopy closure across all water regimes. These results suggest that succulents, bulbs, and rhizotomous forbs have potential for use on extensive green roofs in seasonally dry climates even without supplemental irrigation. Designing extensive roofs composed of more diverse growth forms will likely require some amount of supplemental irrigation. This study highlights the need to design context-specific green roofs that match appropriate plant selections with explicit functional goals and management plans. This will improve function and reduce the overall costs associated with maintenance.


2013 ◽  
Vol 23 (5) ◽  
pp. 563-574 ◽  
Author(s):  
Katherine L. Vinson ◽  
Youbin Zheng

To select plant species and species combinations for northern climates, mats with different plant species and species combinations were constructed on a green roof plant production farm and later transported and installed on an urban rooftop. There were three treatments: two different planting combinations, which together consisted of 10 diverse plant species [both stonecrop (Sedum) species and nonstonecrop species], and a control, which consisted of 26 stonecrop species used for standard mat production. Growth measurements and observations were made at both sites and special attention was paid to the performance of species during the harvest, transportation, and installation stages, as well as during recovery postinstallation. All species but false rock cress (Aubrieta cultorum) were found to be suitable for extensive green roof applications in northern climates, although there were variations of suitability among the species. Good, mediocre, and poor interactions formed between numerous species, displaying different levels of compatibility. Finally, all species were considered appropriate for a mat production system; species that failed to germinate, species planted postinstallation, the frequently displaced rolling hens and chicks (Jovibarba sobolifera), and false rock cress were exceptions. Overall, many species in this study displayed successful, well-rounded growth. Based on results, species and species combinations were recommended for extensive green roofs in northern climates.


HortScience ◽  
2005 ◽  
Vol 40 (2) ◽  
pp. 391-396 ◽  
Author(s):  
Michael A. Monterusso ◽  
D. Bradley Rowe ◽  
Clayton L. Rugh

Although the economic, environmental, and aesthetic benefits of green roofs have been recognized for decades, research quantifying these benefits has been limited—particularly in the U.S. Green roof usage and research is most prevalent in Germany, but can also be seen in several other European countries and Canada. If green roof installations are to be successful in Michigan and the rest of the U.S., then a better understanding of what specific taxa will survive and thrive under harsh rooftop conditions in this geographic area is required. Nine simulated rooftop platforms containing three commercially available drainage systems were installed at Michigan State University. Eighteen Michigan native plants planted as plugs and nine Sedum spp. planted as either seed or plugs were evaluated over three years for growth, survival during both establishment and overwintering, and visual appearance. All Sedum spp. tested were found to be suitable for use on Midwestern green roofs. Of the eighteen native plant taxa tested, Allium cernuum L., Coreopsis lanceolata L., Opuntia humifosa Raf., and Tradescantia ohiensis L. are suitable for use on unirrigated extensive green roofs in Michigan. If irrigation is available, then other native species are potential selections.


Buildings ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 173 ◽  
Author(s):  
Daniel Kaiser ◽  
Manfred Köhler ◽  
Marco Schmidt ◽  
Fiona Wolff

Urban environments are characterized by dense development and paved ground with reduced evapotranspiration rates. These areas store sensible and latent heat, providing the base for typical urban heat island effects. Green roof installations are one possible strategy to reintroduce evaporative surfaces into cities. If green roofs are irrigated, they can contribute to urban water management and evapotranspiration can be enhanced. As part of two research projects, lysimeter measurements were used to determine the real evapotranspiration rates on the research roof of the University of Applied Sciences in Neubrandenburg, Germany. In this paper, we address the results from 2017, a humid and cool summer, and 2018, a century summer with the highest temperatures and dryness over a long period of time, measured in Northeast Germany. The lysimeter measurements varied between the normal green roof layer (variation of extensive green roof constructions) and a special construction with an extra retention layer and damming. The results show that the average daily evapotranspiration rates can be enhanced from 3 to 5 L/m2/day under optimized conditions. A second test on a real green roof with irrigation was used to explain the cooling effects of the surface above a café building in Berlin.


2019 ◽  
Vol 14 (2) ◽  
pp. 29-44 ◽  
Author(s):  
Mert Eksi ◽  
D. Bradley Rowe

Although numerous examples of green roofs can be found in Turkey, limited research has been conducted on plant material and substrate type in this climate. Both plants and substrate are very important components in green roof design, it is essential to determine the proper substrates and plants in green roof systems for domestic green roof design. Two types of growing substrates: a commercial substrate consisting of crushed brick and clay (45%), pumice (45%), and organic matter (10%), and a recycled substrate including 90% coarse pumice (10–20 mm) and municipal compost (10%), were tested in three depths of 4, 7 and 10 cm. Tested plant species included Achillea millefolium , Armeria maritima , Sedum acre and Sedum album . Overall, the commercial substrate performed better than the recycled pumice. In addition, deeper substrates promoted greater survival and growth for nearly all species tested. Either A. maritima or A. millefolium survived in the recycled pumice at any depth, whereas they did survive when grown in the commercial substrate in greater than 7 cm and 10 cm, respectively. They both likely would require supplemental irrigation to be acceptable for green roofs in Istanbul or locations with a similar climate. Both Sedum species survived in all substrate types and depths. Information gained can be utilized by green roof professionals in the Istanbul region and in other parts of the world with a similar climate.


Sign in / Sign up

Export Citation Format

Share Document