Impact of Storage Tanks on Energy Consumption in Municipal Water Distribution Systems

Author(s):  
Santosh R. Ghimire ◽  
Brian D. Barkdoll
1988 ◽  
Vol 20 (11-12) ◽  
pp. 153-159 ◽  
Author(s):  
William D. Rosenzweig ◽  
Wesley O. Pipes

In recent years various types of imperfect fungi have been isolated from water systems. Fungal spores and mycelia can be inactivated by low concentrations of chlorine in the laboratory but survive in some habitats in water distribution systems. This report describes a field study which provides evidence that some types of fungi are able to grow in water distribution systems. Replicate samples from private residences were used to demonstrate that fungal densities are sometimes much greater than the levels which could be explained by adventitious spores. The microbiological content of water samples from fire hydrants was often significantly different from that of water samples from nearby private residences. The treated water input to distribution systems was found to be significantly lower in fungus content than water from private residences. Elevated storage tanks open to the atmosphere appear to be significant sources of fungal input to some systems.


Author(s):  
Steven G. Buchberger ◽  
Robert M. Clark ◽  
Walter M. Grayman ◽  
Zhiwei Li ◽  
Susanna Tong ◽  
...  

2012 ◽  
Vol 5 (1) ◽  
pp. 47-65 ◽  
Author(s):  
A. Marchi ◽  
A. R. Simpson ◽  
N. Ertugrul

Abstract. Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs) a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs) which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, inverters and the pumps themselves) to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period), losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.


2012 ◽  
Vol 5 (1) ◽  
pp. 15-21 ◽  
Author(s):  
A. Marchi ◽  
A. R. Simpson ◽  
N. Ertugrul

Abstract. Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs) a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs) which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, variable frequency drives and the pumps themselves) to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period), losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.


Sign in / Sign up

Export Citation Format

Share Document