Fault Diagnosis and Active Fault Tolerant Control for Near Space Vehicle Based on Adaptive Observer

2010 ◽  
Author(s):  
Yufei Xu ◽  
Bin Jiang ◽  
Zhang Ren ◽  
Zhifeng Gao
2019 ◽  
Vol 9 (19) ◽  
pp. 4010 ◽  
Author(s):  
Ngoc Phi Nguyen ◽  
Sung Kyung Hong

Fault-tolerant control is becoming an interesting topic because of its reliability and safety. This paper reports an active fault-tolerant control method for a quadcopter unmanned aerial vehicle (UAV) to handle actuator faults, disturbances, and input constraints. A robust fault diagnosis based on the H ∞ scheme was designed to estimate the magnitude of a time-varying fault in the presence of disturbances with unknown upper bounds. Once the fault estimation was complete, a fault-tolerant control scheme was proposed for the attitude system, using adaptive sliding mode backstepping control to accommodate the actuator faults, despite actuator saturation limitation and disturbances. The Lyapunov theory was applied to prove the robustness and stability of the closed-loop system under faulty operation. Simulation results show the effectiveness of the fault diagnosis scheme and proposed controller for handling actuator faults.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 924
Author(s):  
Kezhen Han ◽  
Changzhi Chen ◽  
Mengdi Chen ◽  
Zipeng Wang

A new active fault tolerant control scheme based on active fault diagnosis is proposed to address the component/actuator faults for systems with state and input constraints. Firstly, the active fault diagnosis is composed of diagnostic observers, constant auxiliary signals, and separation hyperplanes, all of which are designed offline. In online applications, only a single diagnostic observer is activated to achieve fault detection and isolation. Compared with the traditional multi-observer parallel diagnosis methods, such a design is beneficial to improve the diagnostic efficiency. Secondly, the active fault tolerant control is composed of outer fault tolerant control, inner fault tolerant control and a linear-programming-based interpolation control algorithm. The inner fault tolerant control is determined offline and satisfies the prescribed optimal control performance requirement. The outer fault tolerant control is used to enlarge the feasible region, and it needs to be determined online together with the interpolation optimization. In online applications, the updated state estimates trigger the adjustment of the interpolation algorithm, which in turn enables control reconfiguration by implicitly optimizing the dynamic convex combination of outer fault tolerant control and inner fault tolerant control. This control scheme contributes to further reducing the computational effort of traditional constrained predictive fault tolerant control methods. In addition, each pair of inner fault tolerant control and diagnostic observer is designed integratedly to suppress the robust interaction influences between estimation error and control error. The soft constraint method is further integrated to handle some cases that lead to constraint violations. The effectiveness of these designs is finally validated by a case study of a wastewater treatment plant model.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1695 ◽  
Author(s):  
Qinyue Zhu ◽  
Zhaoyang Li ◽  
Xitang Tan ◽  
Dabo Xie ◽  
Wei Dai

Due to the use of multiple observers and controllers in multi-sensor fault-tolerant control of PMSM drive systems, the algorithm is complex and the system control performance is affected. In view of this, the paper studies multi-sensor fault diagnosis and active fault-tolerant control strategies based on a composite sliding mode observer. With the mathematical model of PMSM built, a design method of the composite sliding mode observer is proposed. A single observer is used to observe and estimate various state variables in the system in real time, which simplifies the implementation of observer-related algorithms. In order to improve the diagnostic accuracy of different types of sensors under different faults, a method for determining fault thresholds is proposed through global search for the maximum residual value. Based on this, a fault diagnosis and active fault-tolerant control strategy is proposed to realize fast switching and reconstruction of feedback signals of closed-loop control systems under different faults of multiple sensors, thus restoring the system performance. Finally, the effectiveness of the proposed algorithm and control strategy is verified by simulation experiments


Sign in / Sign up

Export Citation Format

Share Document