Effects of Blast-Induced Permanent Deflections on the Performance of Load-Bearing Steel Elements in Fire

Author(s):  
L. Magenes ◽  
T. J. Mander ◽  
M. A. Morovat
Keyword(s):  
2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2019 ◽  
Vol 107 ◽  
pp. 15-28 ◽  
Author(s):  
Harikrishnan Magarabooshanam ◽  
Anthony Ariyanayagam ◽  
Mahen Mahendran
Keyword(s):  

2019 ◽  
Author(s):  
Justin Sims ◽  
Zhichao Li ◽  
B. Lynn Ferguson

Abstract Quench hardening is a necessary process for improving the mechanical and fatigue performance of load bearing steel components, but liquid quenching can lead to large distortions. High pressure gas quenching is becoming a more popular choice, with the assumption that a slower cooling rate will lead to less distortion. While true for certain geometries, nonlinearities in distortion response can make understanding the dimensional change of a component difficult due to the inherently complex behavior during quenching. Through the use of modeling, and a specially designed coupon, the out-of-round distortion of an eccentric bore is examined for common high-pressure gas quenching conditions. The causes of distortion are examined and explained using the model, with insights into why the cooling rate has a nonlinear relation with distortion.


2002 ◽  
Vol 29 (5) ◽  
pp. 777-786
Author(s):  
Steven R Fox ◽  
Reinhold M Schuster

Cold-formed steel structural members are often used in building construction, with a common application being wind load bearing steel studs. The studs frame into horizontal steel track members at the top and bottom of the wall assembly, with the stud-to-track connection typically being made with self-drilling screws or welds. The design of the wall stud must include a check of the web crippling capacity at the end reactions. The type of end bearing that exists in these stud-to-track connections is not explicitly addressed by the current North American cold-formed steel design documents. Reported in this paper are the results and analysis of a collection of end-one-flange web crippling tests of common stud-to-track connections. The tests show that there are two failure modes: web crippling of the stud, and punch-through of the track flange. Design expressions are proposed to predict the capacity of the connection based on these two modes of failure. The effects of increasing the gap between the stud and the track and the effects of missing screws in the stud-to-track connection are also discussed.Key words: cold-formed steel, steel studs, structural design, connections, web crippling.


2018 ◽  
Vol 157 ◽  
pp. 02024 ◽  
Author(s):  
Bohuš Leitner ◽  
Lucia Figuli

Problems of fatigue life prediction of materials and structures are discussed in the paper. Service loading is assumed as a continuous loading process with possible discontinuous events, which are caused by various operating conditions. The damage in a material is due to a cumulative degradation process. The damaging process is then represented either by rain-flow matrices or by a fatigue damage function which is derived using some hypothesis of a fatigue failure criterion. Presented theoretical procedure enables a very effective estimation of a service life and/or reliable evaluation of residual life of any structures under various types of loading and environmental conditions. This approach creates a good basis for powerful expert systems in structural and mechanical engineering. The aim of the paper is to present briefly some results of analysis of load-bearing steel structure loads of special railway crane PKP 25/20i which was utilized in some specific ad relatively hard operating conditions. Virtual models of the structure were being used in an analysis of acting working dynamics loads influence to be able to forecast fatigue life of load-bearing of the crane jib.


Sign in / Sign up

Export Citation Format

Share Document