Strength of wind load bearing wall stud-to-track connections

2002 ◽  
Vol 29 (5) ◽  
pp. 777-786
Author(s):  
Steven R Fox ◽  
Reinhold M Schuster

Cold-formed steel structural members are often used in building construction, with a common application being wind load bearing steel studs. The studs frame into horizontal steel track members at the top and bottom of the wall assembly, with the stud-to-track connection typically being made with self-drilling screws or welds. The design of the wall stud must include a check of the web crippling capacity at the end reactions. The type of end bearing that exists in these stud-to-track connections is not explicitly addressed by the current North American cold-formed steel design documents. Reported in this paper are the results and analysis of a collection of end-one-flange web crippling tests of common stud-to-track connections. The tests show that there are two failure modes: web crippling of the stud, and punch-through of the track flange. Design expressions are proposed to predict the capacity of the connection based on these two modes of failure. The effects of increasing the gap between the stud and the track and the effects of missing screws in the stud-to-track connection are also discussed.Key words: cold-formed steel, steel studs, structural design, connections, web crippling.

Author(s):  
Achmad Abraham S. ARMO ◽  
Anis SAGGAFF ◽  
Mahmood Bin Md. TAHIR

New methods to provide shear strength on the cold-formed steel (CFS) lipped c-channel section composite beam encased with concrete partially is proposed using rebars embedded in concrete. The development of research on the CFS composite beams technology with partial encasement shows that the section of the composite beam encased with concrete partially can provide ductile flexural action for the composite beam. The application of profiled metal decking slabs in the composite beam is becoming increasingly popular compared to solid slabs. However, it has a detrimental effect on the structural behavior of a composite beam. This research is aimed primarily at presenting the behavior of the rebar shear connector to evaluated ductility, shear capacity, and modes of failure. Two samples using a rebar 12 mm in diameter in the profiled metal decking slabs and solid slabs were tested using the standard push-out test till failure. For the composite beam design, the proposed shear connector embedded in the slab concrete and the CFS encased with concrete partially used the test results’ shear capacity, greater than the values as proposed by section 3.1, BS 5950. Due to rebars shear-off, the solid slab specimen failed with the highest load of 489.6 kN while the Profiled Metal Decking Slab specimen failed due to the formation of the cracks on the PMDS at 421.1 KN ultimate loading. HIGHLIGHTS A new system of the rebar shear connectors for the Cold-Formed Steel (CFS) composite beam partially encased in concrete have been developed The main purpose of push-out testing is to investigate the shear capacity and ductility of the proposed shear connector failure modes and load-slip connections The shear capacity of the test results is greater than the values as indicated by BS 5950 Part 3.1 The proposed rebars as a shear connector for partly embedded CFS can be used in the construction GRAPHICAL ABSTRACT


2011 ◽  
Vol 46 (8) ◽  
pp. 497-505 ◽  
Author(s):  
Seul-Hyun Park ◽  
Samuel L. Manzello ◽  
Matthew F. Bundy ◽  
Tensei Mizukami

2012 ◽  
Vol 12 (01) ◽  
pp. 109-130 ◽  
Author(s):  
C. WU ◽  
X. L. ZHAO ◽  
W. H. DUAN ◽  
P. PHIPAT

Web crippling is the major failure mode of thin-walled members when they are subjected to concentrated loading. Carbon fiber-reinforced polymer (CFRP) is found to be promising for strengthening metallic structural members. This paper reports improved web-crippling capacity of sharp-corner aluminum tubular sections: rectangular hollow section (RHS) and square hollow section (SHS), by attaching CFRP to their webs. Twenty four specimens were tested with four CFRP strengthening configurations applied on each of six different aluminum RHS and SHS sections. Significant increase in load-carrying capacity was obtained. Further comparison is made between CFRP strengthened aluminum tubular sections and cold-formed steel counterparts in respect of strengthening efficiency. Underlying mechanism of different failure modes and strengthening efficiencies of various strengthening configurations are discussed with the assistance of FEM simulation.


2007 ◽  
Vol 31 (5) ◽  
pp. 297-310 ◽  
Author(s):  
Samuel L. Manzello ◽  
Richard G. Gann ◽  
Scott R. Kukuck ◽  
Kuldeep Prasad ◽  
Walter W. Jones

2006 ◽  
Vol 43 (1) ◽  
pp. 77-89 ◽  
Author(s):  
Samuel L. Manzello ◽  
Richard G. Gann ◽  
Scott R. Kukuck ◽  
Kuldeep R. Prasad ◽  
Walter W. Jones

2011 ◽  
Vol 201-203 ◽  
pp. 2900-2903 ◽  
Author(s):  
Chui Huon Tina Ting ◽  
Hieng Ho Lau

Built-up sections are used to resist load induced in a structure when a single section is not sufficient to carry the design load for example roof trusses. In current North American Specification, the provision has been substantially taken from research in hot-rolled built-up members connected with bolts or welds [1]. The aim of this paper is to investigate on built-up back-to-back channels stub columns experimentally and theoretically using Effective Width Method and Direct Strength Method. Compression test was performed on 5 lipped channel and 5 back-to-back channels stub columns fabricated from cold-formed steel sheets of 1.2mm thicknesses. The test results indicated that local buckling is the dominant failure modes of stub columns. Therefore, Effective Width Method predicts the capacity of stub columns compared to Direct Strength Method. When compared to the average test results, results based on EWM are 5% higher while results based on DSM are 12% higher for stub column.


Author(s):  
Tilahun Y ◽  
◽  
Mesfin G ◽  

Aluminum is a metal matrix material which is widely used in different industrial as well as engineering applications.it has a great advantage due to its remarkable properties like less density, formability, and light in weight, recyclability and other properties. but, failure of aluminum matrix materials are the main problems in aluminum industries now a days.in this review role of aluminum and its alloys as matrix materials, their failure modes, causes of failure and optimization techniques to minimize this failure modes and causes of failure are discussed. Sources are reviewed which are from 2005 to recent one. Consequently, most modes of failure, causes of failure and most optimization techniques of aluminum and its alloy matrix materials are found. most modes of failure are mechanical related like fatigue failure, surface cracking, ductile failure, porosity formation, and stress related like stress corrosion cracking, surface weakness due to repeated stresses and other factors are summarized.in causes of failure mostly like corrosion formation, wear formation and poor mechanical properties are discussed.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


Sign in / Sign up

Export Citation Format

Share Document