Study on the Data-Bases for Fire Engineering Design of Structural Steels Members

2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.

2019 ◽  
Vol 262 ◽  
pp. 09005 ◽  
Author(s):  
Tomasz Domański ◽  
Kamil Kmiecik

Connections are usually the weakest parts in most structures, especially in fire conditions. The load-bearing capacity of timber structures is often limited by the resistance of steel connection between timber structural members. The temperature distribution in the cross-section as well as the influence of steel fasteners on the charring of the timber members is necessary to predict the fire resistance of the connection. This paper presents a summary of results from numerical studies on the fire behaviour of the steel connections between timber structural members. To make the three-dimensional thermal models of the joints, the FE (finite element) programme SAFIR was used. Then, the finite element models of the connections were used to analyse the temperature distribution inside cross-sections under standard ISO-fire exposure. The failure modes from the literature were used to predict the load-bearing capacity of the steel connections at elevated temperatures. The reduction of the cross-section caused by charring, the reduction of embedment strength and the reduction of steel strength at fire conditions were taken into account in the calculations.


2017 ◽  
Vol 8 (3) ◽  
pp. 324-336 ◽  
Author(s):  
Kristian Hertz ◽  
Luisa Giuliani ◽  
Lars Schiøtt Sørensen

Purpose Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality value For the first time, the mechanisms responsible for loss of load-bearing capacity are identified, and test results and calculation approach are for the first time applied in accordance with each other for assessment of fire resistance of the structure.


Author(s):  
А.V. Perelmuter ◽  
◽  
V.V. Yurchenko ◽  

Abstract. The main purpose of the research was a deep analysis and verification of the consistency and completeness of the design code relating to calculation of load-bearing structural members made from cold-formed profiles. The work has been done in close connection with the implementation on the territory of Ukraine of this design code. The article has discussed and investigated the load-bearing capacity of structural members made of cold-formed profiles subjected to the action of central compression. A system of constraints has been presented, in which the strength and buckling constraints for thin-walled cold-formed column members are formulated, taking into account their possible post-buckling behavior, namely, the ability to resist external loads and effects even after the occurrence of the local buckling and/or distortional buckling phenomenon. The performed load-bearing capacity investigation has shown that for the mono-symmetric cold-formed profiles, the flexural-torsional buckling is determinative. For such cold-formed profiles, the effect of the overall dimensions ratio (flange width to web height) on the load-bearing capacity of cold-formed profiles has been estimated. It has been shown that for the same cross-sectional area the load-bearing capacity of a column structural member made from cold-formed profile and subjected to axial compression can be significantly increased by assigning an optimal ratio of flange width to web height. The paper also has presented the results of the load-bearing capacities for the structural cold-formed members subjected to central compression, calculated according to the design standard DSTU-N B EN 1993-1-3: 2012 and according to the design code DBN V.2.6-198: 2014. It has been shown that in some cases the difference in the assessment of the load-bearing capacity for such structural cold-formed members reached 25%. A comparison of the load-bearing capacities for the action of the central compression has been made for structural cold-formed members made from a C-shaped profile and with a composite section of two C-shaped profiles. It has been shown that the load-bearing capacity of the structural cold-formed member of the composite section exceeds the load-bearing capacity of the member with single C-shaped profile by more than 3 times, while cross-section areas of these structural members differ only doubly.


2011 ◽  
Vol 243-249 ◽  
pp. 5614-5617
Author(s):  
Xiao Juan Gao ◽  
Yue Hui Li

Jiangsong villa is the famous ancient architecture in Longmen scenic spot. The appearance and structural members of villa are damaged seriously because of long-term natural action. Load bearing capacity of the structure reduces largely and should be repaired immediately for the cultural relic protection and tourism development. According to the surrounding requirement of scenic spot, the performance of damaged members is detected and reasonable reinforcement methods are put forward in this paper.


Author(s):  
Serhii Bilyk ◽  
Vitalina Yurchenko

Parametric optimization problem for single edge fold size in cold-formed structural members subjected to central compression has been considered by the paper. Determination the load-bearing capacity of the cold-formed structural members has been performed using the geometrical properties calculated based on the constructed “effective” (reduced) cross-sections taking into account local buckling effects in the section as well as distortional buckling effects. Single edge fold size in cold-formed C-profile has been considered as design variable. Linear convolution of criteria, namely minimization criterion of design area of stiffener cross-section and maximization criterion effective area of stiffener cross-section which defines it reduced load-bearing capacity due to flexural buckling has been used as optimization criterion. The parametric optimization problem has been solved using the method of objective function gradient projection onto the active constraints surface with simultaneous correction of the constraints violations. In order to realize the formulated optimization problem, software OptCAD intended to solve parametric optimization problems for steel structural systems has been used. Optimization results of the single edge folds for the cold-formed С-profiles manufactured by «Blachy Pruszyński» company, «BF FACTORY» company as well as «STEELCO» company have been presented by the paper. The results of the performed investigation can be used as recommendations for companies-manufacturers of the cold-formed profiles, as well as a guide for creation the national assortment base of the effective cold-formed profiles promoting wider implementation of cold-formed steel structures in building practice.


Author(s):  
Daniel Izydorczyk ◽  
Bartłomiej Sędłak ◽  
Paweł Sulik

<p>Fire resistant door assemblies (doors) for pedestrian or industrial traffic with frame, leaf or leaves, rolled or folded curtain etc. are designed for installation in the openings of the building’s vertical internal partitions. The building and its associated equipment shall be designed and made so that in case of fire it ensures the necessary load bearing capacity of the structure for the time specified in national regulations, limitation of fire and smoke propagation within the building, limitation of fire propagation onto the adjacent buildings and evacuation of people, and it provides safety of the rescue teams. The mentioned requirements are not usually considered individually (e.g. ensuring proper evacuation is connected with the structural load bearing capacity, fire and smoke propagation within the building, and rescue team safety), therefore individual elements of buildings can play several roles during a fire.</p><p>This also refers to the building elements such as doors which are usually required in terms of design and execution to ensure that in case of fire they shall, for a specific period of time prevent its development from the room or a specific zone where the fire started to other rooms or zones, allow evacuation of people by limiting heat radiation, and facilitate rescue team activities. Therefore, fire doors have a major role in the fulfillment of the rules of buildings fire safety.</p>This paper discusses the main issues related to the fire resistance of fire doors (tests methodology and way of classification) and presents a comparison of temperature rises on unexposed surface of fire doors test specimens depending on the type of structure and side of fire exposure. Temperature rises have been compared on unexposed surface of timber, aluminum and steel single leaf doorset which have fulfill the requirements of the EI<sub>2</sub> 30 fire resistance class, in case of the fire acting from the hinge side and the side opposite to the hinges.


Author(s):  
Olena Yefimenko

In the article presents an engineering method for calculating compressed flexible reinforced concrete elements with sheet reinforcement over a steel cross section. The results of the calculation are compared with the experimental data. Calculation ofload-bearing capacity of reinforced concrete flexible elements with sheet reinforcement is based on the method of boundarystates. The work of specimens under load and the nature of the load-bearing capacity depending on the height and eccentricity of the effort were investigated. The proposed method of calculating compressed elements with sheet reinforcement on asteel-cross-section allows to take into account their flexibility in both axial and out-of-center application of load.


Sign in / Sign up

Export Citation Format

Share Document