A Vehicle Driving Simulator Based on Virtual Reality

Author(s):  
Xiongqing Peng ◽  
Hu Su ◽  
Zhiqiang Wang ◽  
Yang Yu
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 26
Author(s):  
David González-Ortega ◽  
Francisco Javier Díaz-Pernas ◽  
Mario Martínez-Zarzuela ◽  
Míriam Antón-Rodríguez

Driver’s gaze information can be crucial in driving research because of its relation to driver attention. Particularly, the inclusion of gaze data in driving simulators broadens the scope of research studies as they can relate drivers’ gaze patterns to their features and performance. In this paper, we present two gaze region estimation modules integrated in a driving simulator. One uses the 3D Kinect device and another uses the virtual reality Oculus Rift device. The modules are able to detect the region, out of seven in which the driving scene was divided, where a driver is gazing at in every route processed frame. Four methods were implemented and compared for gaze estimation, which learn the relation between gaze displacement and head movement. Two are simpler and based on points that try to capture this relation and two are based on classifiers such as MLP and SVM. Experiments were carried out with 12 users that drove on the same scenario twice, each one with a different visualization display, first with a big screen and later with Oculus Rift. On the whole, Oculus Rift outperformed Kinect as the best hardware for gaze estimation. The Oculus-based gaze region estimation method with the highest performance achieved an accuracy of 97.94%. The information provided by the Oculus Rift module enriches the driving simulator data and makes it possible a multimodal driving performance analysis apart from the immersion and realism obtained with the virtual reality experience provided by Oculus.


2011 ◽  
Vol 460-461 ◽  
pp. 704-709
Author(s):  
Shu Tao Zheng ◽  
Zheng Mao Ye ◽  
Jun Jin ◽  
Jun Wei Han

Vehicle driving simulators are widely employed in training and entertainment utilities because of its safe, economic and efficient. Amphibious vehicle driving simulator was used to simulate amphibious vehicle on land and in water. Because of the motion difference between aircraft and amphibious vehicle, it is necessary to design a reasonable 6-DOF motion system according to the flight simulator motion system standard and vehicle motion parameter. FFT of DSP and PSD were used to analysis the relationship between them. Finally according to the result analysis, a set of reasonable 6-DOF motion system motion parameter was given to realize the driving simulator motion cueing used to reproduce vehicle acceleration.


Author(s):  
S. Aihara ◽  
T. Emura ◽  
R. Nomura ◽  
T. Sunada ◽  
M. Kumagai ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Otmar Bock ◽  
Uwe Drescher ◽  
Wim van Winsum ◽  
Thomas F Kesnerus ◽  
Claudia Voelcker-Rehage

Virtual reality technology can be used for ecologically valid assessment and rehabilitation of cognitive deficits. This article expands the scope of applications to ecologically valid multitasking. A commercially available driving simulator was upgraded by adding an ever-changing sequence of concurrent, everyday-like tasks. Furthermore, the simulator software was modified and interfaced with a non-motorized treadmill to yield a pedestrian street crossing simulator. In the latter simulator, participants walk on through a virtual city, stop at busy streets to wait for a gap in traffic, and then cross. Again, a sequence of everyday-like tasks is added. A feasibility study yielded adequate “presence” in both virtual scenarios, and plausible data about performance decrements under multi-task compared to single-task conditions. The present approach could be suitable for the assessment and training of multitasking skills in older adults and neurological patients.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Kang Hooi-Siang ◽  
Mohamad Kasim Abdul Jalil ◽  
Lee Kee-Quen

Interactive simulation in automotive driving has enhanced the studies of driver behaviors, traffic control, and vehicle dynamics. The development of virtual reality (VR) technology leads to low cost, yet high fidelity, driving simulator become technically feasible. However, a good implementation of high realism and real-time interactive three-dimensional (3D) virtual environment (VE) in an automotive driving simulation are facing many technical challenges such as accessibility, dissimilarity, scalability, and sufficiency. The objective of this paper is to construct a virtual reality system for an automotive driving simulator. The technology with variations of terrain, roadway, buildings, and greenery was studied and developed in the VE of the simulator. Several important technical solutions in the construction of VE for driving simulation had been identified. Finally, the virtual reality system was interactively used in a driver-in-loop simulation for providing direct road elevation inputs to the analysis of vehicle dynamics model (VDM). The results indicated identical matching between the VDM inputs and the VE outputs. The outcomes of this paper lead to a human-in-the-loop foundation of a low-cost automotive driving simulator in the vehicle engineering research. 


2011 ◽  
Vol 63-64 ◽  
pp. 82-85 ◽  
Author(s):  
Chen Zhang ◽  
Chang Yong Xu ◽  
Li Yan Zhang

A proprioceptive mechanism of vehicle driving simulator is proposed to realize pitch, roll and vibration action of vehicle driving simulator based on application foundation of proprioceptive mechanism. The proposed mechanism has very simple structure and a brief description of this mechanism is given. The proposed proprioceptive mechanism is established based on CATIA V5 platform by using the virtual prototyping technology. The CATIA V5 motion simulation model is used to simulate the proposed proprioceptive mechanism by setting the parameters of source motion input and motion interference and motion characteristic is analyzed to provide design basis. The kinematics simulation results show that the designed proprioceptive mechanism for vehicle driving simulator can realize the design requirements and complete the proprioceptive actions.


2014 ◽  
Vol 505-506 ◽  
pp. 315-318
Author(s):  
Ji Guo Zeng ◽  
Jing Yu Liu ◽  
Qiang Yu

The high-level driving simulators generally involve motion platform. This paper describes the design and development of a 6DOF hydraulic motion platform for vehicle driving simulator. Firstly, the structure and kinematic model of the platform are introduced. Then, the speed characteristics of the hydraulic cylinders by using different positive and negative voltage are studied. Because the cylinder startup time and hydraulic pump pressure will both affect the platform's final position, so a real-time platform control method according the sensor feedback is described. Finally, commonly used control functions of the platform are listed. The simulator and the motion platform run well by using this control method.


Sign in / Sign up

Export Citation Format

Share Document