scholarly journals VIRTUAL REALITY FOR LOW-COST AUTOMOTIVE DRIVING SIMULATOR IN VEHICLE ENGINEERING RESEARCH

2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Kang Hooi-Siang ◽  
Mohamad Kasim Abdul Jalil ◽  
Lee Kee-Quen

Interactive simulation in automotive driving has enhanced the studies of driver behaviors, traffic control, and vehicle dynamics. The development of virtual reality (VR) technology leads to low cost, yet high fidelity, driving simulator become technically feasible. However, a good implementation of high realism and real-time interactive three-dimensional (3D) virtual environment (VE) in an automotive driving simulation are facing many technical challenges such as accessibility, dissimilarity, scalability, and sufficiency. The objective of this paper is to construct a virtual reality system for an automotive driving simulator. The technology with variations of terrain, roadway, buildings, and greenery was studied and developed in the VE of the simulator. Several important technical solutions in the construction of VE for driving simulation had been identified. Finally, the virtual reality system was interactively used in a driver-in-loop simulation for providing direct road elevation inputs to the analysis of vehicle dynamics model (VDM). The results indicated identical matching between the VDM inputs and the VE outputs. The outcomes of this paper lead to a human-in-the-loop foundation of a low-cost automotive driving simulator in the vehicle engineering research. 

2015 ◽  
Vol 24 (4) ◽  
pp. 298-321 ◽  
Author(s):  
Ernesto de la Rubia ◽  
Antonio Diaz-Estrella

Virtual reality has become a promising field in recent decades, and its potential now seems clearer than ever. With the development of handheld devices and wireless technologies, interest in virtual reality is also increasing. Therefore, there is an accompanying interest in inertial sensors, which can provide such advantages as small size and low cost. Such sensors can also operate wirelessly and be used in an increasing number of interactive applications. An example related to virtual reality is the ability to move naturally through virtual environments. This is the objective of the real-walking navigation technique, for which a number of advantages have previously been reported in terms of presence, object searching, and collision, among other concerns. In this article, we address the use of foot-mounted inertial sensors to achieve real-walking navigation in a wireless virtual reality system. First, an overall description of the problem is presented. Then, specific difficulties are identified, and a corresponding technique is proposed to overcome each: tracking of foot movements; determination of the user’s position; percentage estimation of the gait cycle, including oscillating movements of the head; stabilization of the velocity of the point of view; and synchronization of head and body yaw angles. Finally, a preliminary evaluation of the system is conducted in which data and comments from participants were collected.


Author(s):  
Penny J. Standen ◽  
David J. Brown ◽  
Steven Battersby ◽  
Marion Walker ◽  
Louise Connell ◽  
...  

2018 ◽  
Vol 19 (7) ◽  
pp. 1237-1244 ◽  
Author(s):  
Eun-Su Lim ◽  
Sung-Yi Yun ◽  
Yong-Suk Ko ◽  
Ha-Young Jung ◽  
Hong-Sub Choi

2016 ◽  
Vol 16 (4) ◽  
pp. 40
Author(s):  
Giovanni Fusco ◽  
Natela Shanidze ◽  
Preeti Verghese

2011 ◽  
Vol 291-294 ◽  
pp. 2682-2685
Author(s):  
Xiao Hui Xie ◽  
Cui Cui Zhao ◽  
Ru Xu Du ◽  
Xiao Fang Yu ◽  
Yue Zhang

During the liver intervention surgery, the excellent doctor with the help of CT image need puncture the patient several times to find the correct tumor position. Thus, the pain increases for the patient. For the problem a low-cost auxiliary robot system with the help of virtual reality technology for liver invasion surgery is introduced. The auxiliary arm can indicate the punctuation path for doctor and the virtual reality system can find the difference between the planning path of simulation and actual indication path of robot. Then the error can be compensated by modifying and updating the simulation model. Thus the system based on virtual reality is more accuracy and more effective.


2020 ◽  
Vol 12 (2) ◽  
pp. 61
Author(s):  
Marcin Maciejewski ◽  
Marek Piszczek ◽  
Mateusz Pomianek ◽  
Norbert Pałka

We present test results of an authorial tracking device developed in the SteamVR system, optimized for use in a missile launcher shooting simulator. Data for analysis was collected using the virtual reality training application, with the launcher set on a stable tripod and held by a trainee who executed two scenarios with static and movable targets. The analysis of experimental data confirms that the SteamVR system together with the developed tracker can be successfully implemented in the virtual shooting simulator. Full Text: PDF ReferencesD. Bogatinov, P. Lameski, V. Trajkovik, K.M. Trendova, "Firearms training simulator based on low cost motion tracking sensor", Multimed. Tools Appl. 76(1) (2017) CrossRef D.C. Niehorster, L. Li, M. Lappe, "The Accuracy and Precision of Position and Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research", Iperception. 8(3) (2017) CrossRef A. Yates, J. Selan, POSITIONAL TRACKING SYSTEMS AND METHODS. US20160131761A1, (2016) DirectLink P. Caserman, A. Garcia-Agundez, R. Konrad, S. Göbel, R. Steinmetz, Virtual Real. 23(2) (2019) 155-68. CrossRef


Sign in / Sign up

Export Citation Format

Share Document