Analysis, Prediction, and Mitigation of Vortex Induced Vibrations in Substation Structures

Author(s):  
Hossein Qarib ◽  
Diaaeldin Mohamed
2005 ◽  
Vol 12 (1) ◽  
pp. 29-44 ◽  
Author(s):  
M. Provansal ◽  
T. Leweke ◽  
L. Schouveiler ◽  
N Aprile

2005 ◽  
Vol 522 ◽  
pp. 215-252 ◽  
Author(s):  
F. FLEMMING ◽  
C. H. K. WILLIAMSON

Author(s):  
Remi Bourguet ◽  
Michael S. Triantafyllou ◽  
Michael Tognarelli ◽  
Pierre Beynet

The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lock-in region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations.


2014 ◽  
Vol 49 ◽  
pp. 427-440 ◽  
Author(s):  
Clément Grouthier ◽  
Sébastien Michelin ◽  
Rémi Bourguet ◽  
Yahya Modarres-Sadeghi ◽  
Emmanuel de Langre

Author(s):  
Yoann Jus ◽  
Elisabeth Longatte ◽  
Jean-Camille Chassaing ◽  
Pierre Sagaut

The present work focusses on the numerical study of Vortex-Induced Vibrations (VIV) of an elastically mounted cylinder in a cross flow at moderate Reynolds numbers. Low mass-damping experimental studies show that the dynamic behavior of the cylinder exhibits a three-branch response model, depending on the range of the reduced velocity. However, few numerical simulations deal with accurate computations of the VIV amplitudes at the lock-in upper branch of the bifurcation diagram. In this work, the dynamic response of the cylinder is investigated by means of three-dimensional Large Eddy Simulation (LES). An Arbitrary Lagrangian Eulerian framework is employed to account for fluid solid interface boundary motion and grid deformation. Numerous numerical simulations are performed at a Reynolds number of 3900 for both no damping and low-mass damping ratio and various reduced velocities. A detailed physical analysis is conducted to show how the present methodology is able to capture the different VIV responses.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Min Zhang ◽  
YingZheng Liu ◽  
ZhaoMin Cao

A concept of energy harvesting from vortex-induced vibrations of a rigid circular cylinder with two piezoelectric beams attached is investigated. The variations of the power levels with the free stream velocity are determined. A mathematical approach including the coupled cylinder motion and harvested voltage is presented. The effects of the load resistance, piezoelectric materials, and circuit combined on the natural frequency and damping of the vibratory system are determined by performing a linear analysis. The dynamic response of the cylinder and harvested energy are investigated. The results show that the harvested level in SS and SP&PS modes is the same with different values of load resistance. For four different system parameters, the results show that the bigger size of cylinder with PZT beams can obtain the higher harvested power.


Author(s):  
C. Le Cunff ◽  
E. Fontaine ◽  
F. Biolley

Fatigue due to environmental conditions is studied on a top-tensioned riser. The fatigue is due to two factors. First, the waves produce a displacement of the top of the riser, which excites the structure. Secondly, currents create vortices behind the structures. The phenomenon is then referred to as vortex-induced vibrations (VIV), whereby the vortices can lock onto a structural mode through the shedding frequency. In the present paper, we have two objectives. The first is to compare the fatigue estimates given either by a modal analysis or by Navier-Stokes calculations for a riser in a current. The second is to determine if studying the wave and current effects separately produces conservative results or if they must be studied together.


Sign in / Sign up

Export Citation Format

Share Document