Riser Fatigue Due to Currents and Waves

Author(s):  
C. Le Cunff ◽  
E. Fontaine ◽  
F. Biolley

Fatigue due to environmental conditions is studied on a top-tensioned riser. The fatigue is due to two factors. First, the waves produce a displacement of the top of the riser, which excites the structure. Secondly, currents create vortices behind the structures. The phenomenon is then referred to as vortex-induced vibrations (VIV), whereby the vortices can lock onto a structural mode through the shedding frequency. In the present paper, we have two objectives. The first is to compare the fatigue estimates given either by a modal analysis or by Navier-Stokes calculations for a riser in a current. The second is to determine if studying the wave and current effects separately produces conservative results or if they must be studied together.

2021 ◽  
Vol 9 (7) ◽  
pp. 742
Author(s):  
Minsheng Zhao ◽  
Decheng Wan ◽  
Yangyang Gao

The present work focuses on the comparison of the numerical simulation of sheet/cloud cavitation with the Reynolds Average Navier-Stokes and Large Eddy Simulation(RANS and LES) methods around NACA0012 hydrofoil in water flow. Three kinds of turbulence models—SST k-ω, modified SST k-ω, and Smagorinsky’s model—were used in this paper. The unstable sheet cavity and periodic shedding of the sheet/cloud cavitation were predicted, and the simulation results, namelycavitation shape, shedding frequency, and the lift and the drag coefficients of those three turbulence models, were analyzed and compared with each other. The numerical results above were basically in accordance with experimental ones. It was found that the modified SST k-ω and Smagorinsky turbulence models performed better in the aspects of cavitation shape, shedding frequency, and capturing the unsteady cavitation vortex cluster in the developing and shedding period of the cavitation at the cavitation number σ = 0.8. At a small angle of attack, the modified SST k-ω model was more accurate and practical than the other two models. However, at a large angle of attack, the Smagorinsky model of the LES method was able to give specific information in the cavitation flow field, which RANS method could not give. Further study showed that the vortex structure of the wing is the main cause of cavitation shedding.


Author(s):  
Samuel Kanner ◽  
Bingbin Yu

In this research, the estimation of the fatigue life of a semi-submersible floating offshore wind platform is considered. In order to accurately estimate the fatigue life of a platform, coupled aerodynamic-hydrodynamic simulations are performed to obtain dynamic stress values. The simulations are performed at a multitude of representative environmental states, or “bins,” which can mimic the conditions the structure may endure at a given site, per ABS Floating Offshore Wind Turbine Installation guidelines. To accurately represent the variety of wind and wave conditions, the number of environmental states can be of the order of 103. Unlike other offshore structures, both the wind and wave conditions must be accounted for, which are generally considered independent parameters, drastically increasing the number of states. The stress timeseries from these simulations can be used to estimate the damage at a particular location on the structure by using commonly accepted methods, such as the rainflow counting algorithm. The damage due to either the winds or the waves can be estimated by using a frequency decomposition of the stress timeseries. In this paper, a similar decoupled approach is used to attempt to recover the damages induced from these coupled simulations. Although it is well-known that a coupled, aero-hydro analysis is necessary in order to accurately simulate the nonlinear rigid-body motions of the platform, it is less clear if the same statement could be made about the fatigue properties of the platform. In one approach, the fatigue damage equivalent load is calculated independently from both scatter diagrams of the waves and a rose diagram of the wind. De-coupled simulations are performed to estimate the response at an all-encompassing range of environmental conditions. A database of responses based on these environmental conditions is constructed. The likelihood of occurrence at a case-study site is used to compare the damage equivalent from the coupled simulations. The OC5 platform in the Borssele wind farm zone is used as a case-study and the damage equivalent load from the de-coupled methods are compared to those from the coupled analysis in order to assess these methodologies.


Author(s):  
David Gross ◽  
Yann Roux ◽  
Benjamin Rousse ◽  
François Pétrié ◽  
Ludovic Assier ◽  
...  

The problem of Vortex-Induced Vibrations (VIV) on spool and jumper geometries is known to present several drawbacks when approached with conventional engineering tools used in the study of VIV on risers. Current recommended practices can lead to over-conservatism that the industry needs to quantify and minimize within notably cost reduction objectives. Within this purpose, the paper will present a brief critical review of the Industry standards and more particularly focus on both experimental and Computational Fluid Dynamic (CFD) approaches. Both qualitative and quantitative comparisons between basin tests and CFD results for a 2D ‘M-shape’ spool model will be detailed. The results presented here are part of a larger experimental and numerical campaign which considered a number of current velocities, heading and geometry configurations. The vibratory response of the model will be investigated for one of the current velocities and compared with the results obtained through recommended practices (e.g. Shear7 and DNV guidelines). The strategy used by the software K-FSI to solve the fluid-structure interaction (FSI) problem is a partitioned coupling solver between fluid solver (FINE™/Marine) and structural solvers (ARA). FINE™/Marine solves the Reynolds-Averaged Navier-Stokes Equations in a conservative way via the finite volume method and can work on structured or unstructured meshes with arbitrary polyhedrons, while ARA is a nonlinear finite element solver with a large displacement formulation. The experiments were conducted in the BGO FIRST facility located in La Seyne sur Mer, France. Particular attention was paid towards the model design, fabrication, instrumentation and characterization, to ensure an excellent agreement between the structural numerical model and the actual physical model. This included the use of a material with low structural damping, the performance of stiffness and decay tests in air and in still water, plus the rationalization of the instrumentation to be able to capture the response with the minimum flow perturbation or interaction due to instrumentation.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012116
Author(s):  
Angel Porras-Hermoso ◽  
Javier Cubas ◽  
Santiago Pindado

Abstract Attitude determination represents a fundamental task for most of the spacecrafts. It relies on three basic aspects: 1) sensors selection, 2) relevant environmental conditions estimation, and 3) algorithms that relate the sensor measurements to the expected conditions in the reference frame. Each one has its own impact on the accuracy that the system can achieve. Besides, two factors stand out above the others in terms of accuracy: 1) sensor quality (calibration, range, etc), and 2) precision of the environmental models. The computation of the satellite attitude needs at least two independent measurements (magnetometers, solar sensors...), whit their corresponding simulated measurements in the reference frame. Nevertheless, the number of measurements can be reduced to one if the satellite attitude is constrained. This paper describes a procedure to calculate satellites’ attitude and the main environmental models used (Earth magnetic model, Sun position model, Albedo model), including orbit propagation. This methodology can be extended to measure the performance of a sensor if the satellite attitude can be derived from other measurements and satellite constrains. The methodology is checked with data from the UPMSat-2 mission (launched in September 2020 within the VEGA VV16 mission). This is a 50-kg satellite designed and developed at the Universidad Politécnica de Madrid (UPM).


1980 ◽  
Vol 37 (2) ◽  
pp. 143-154 ◽  
Author(s):  
R. E. Ulanowicz ◽  
T. T. Polgar

An analysis of the spatial and temporal abundance patterns of developing striped bass (Morone saxatilis) ichthyoplankton stages in the Potomac Estuary, including a Markovian description of transport, indicates that annual differences in the distribution of spawning fish are not likely to account wholly for the wide fluctuations in year-class success. Year-class success can be decomposed into the product of two factors — one extrinsic, acting upon the eggs and larvae, and the other, a behavioral property of the adult stock. The effect of extrinsic environmental conditions upon year-class success can be measured relative to the maximum computed survival of eggs to post-finfold larvae among all locations and times during a given year. Apparently, the behavior of the spawning adult fish is not well matched with the environmental conditions favorable to ichthyoplankton survival, and therefore, the actual spawning distribution yields only a fraction (the spawning fitness) of the maximum production possible during that year. Spawning fitnesses were estimated to be small (< 0.02 out of 1.0) and varied by less than a factor of two over the three seasons observed. In contrast, the year-class success as measured by post-finfold production differed 35-fold over the same 3 yr. It appears most likely that the large range in success is due primarily to the extrinsic, density-independent environmental factors which determine the optimum survivals in combination with spawning behavior. However, no strong case can be made for behavioral compensation by spawning fish to offset changes in the annual optimum survival conditions for ichthyoplankton.Key words: anadromous, ichthyoplankton development, Markovian transition probabilities, optimal survival, spawning behavior, spawning fitness, striped bass, transport model, year-class success


1990 ◽  
Vol 220 ◽  
pp. 397-411 ◽  
Author(s):  
Laura L. Pauley ◽  
Parviz Moin ◽  
William C. Reynolds

The separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier–Stokes equations. It was found that a strong adverse pressure gradient created periodic vortex shedding from the separation. The general features of the time-averaged results were similar to experimental results for laminar separation bubbles. Comparisons were made with the ‘steady’ separation experiments of Gaster (1966). It was found that his ‘bursting’ occurs under the same conditions as our periodic shedding, suggesting that bursting is actually periodic shedding which has been time-averaged. The Strouhal number based on the shedding frequency, local free-stream velocity, and boundary-layer momentum thickness at separation was independent of the Reynolds number and the pressure gradient. A criterion for onset of shedding was established. The shedding frequency was the same as that predicted for the most amplified linear inviscid instability of the separated shear layer.


2004 ◽  
Vol 126 (1) ◽  
pp. 96-104 ◽  
Author(s):  
F. Joseph Fischer ◽  
Stergios I. Liapis ◽  
Yannis Kallinderis

The possibility of using active-control technology to mitigate long-period (100–300 s) motions of spar platforms was investigated. In particular, the technical feasibility and cost-effectiveness of using a thruster-based active-control system was examined. Only vortex-induced vibrations (VIV) of a moored spar were considered for this study, although it is believed that similar active-control systems can contend equally well with low-frequency wave-drift and wind-induced motions. VIV has been selected for this demonstration due to the considerable attention it has received for spars, because of the high cost for passive VIV-mitigation means. The investigation employed numerical simulations of the hydrodynamics around the spar in two and three dimensions. In particular, for this study, Navier-Stokes methods were used to compute the strongly nonlinear interactions between the current-flow field and the spar hull. The fluid forces (hull-integrated pressures) were then used to compute the unsteady motions of the moored spar. The effect of the motion-controlling thrusters was included as an additional external force—that also varies with time. Of the several different control strategies that were examined, it was found that the most effective one is “D-Control” wherein thruster forces are proportional to spar velocities. Using such control, spar motions can be kept below 35% of the spar diameter, whereas uncontrolled responses were computed to be as high as 80% of the spar diameter. Similar uncontrolled motions have actually been observed in current-tank model tests of spars. As part of this study, discussions were held with engineers from three different thruster companies to ascertain the number and type of thrusters that would be required to achieve desirable VIV mitigation—given the computed thruster-forces, and to provide prudent reliability. Associated costs were also very much of interest. For the spar system examined here, which is representative of those introduced into or being considered for the Gulf of Mexico, it was found that the cost of the thrusters and their electric motors is around $8 million—a cost that is significantly less than that estimated for passive VIV-control devices such as helical strakes, or discontinuous hull geometries. Furthermore, the proposed thruster system could also be employed to contend with (to mitigate) other undesirable, large-amplitude, near-resonant spar motions, e.g., low-frequency drift, for which there are no alternative remedies at present.


In the ‘Philosophical Magazine’ for December, 1924, Sir Joseph Larmor showed how wireless waves can be transmitted to great distances, round the protuberance of the curved earth, and without excessive damping, if the transmission takes place in an ionised region high in the ultra-rarefied upper atmosphere, in which the number of effective ions increases upwards. Under the influence of the waves the ions oscillate, and thus produce a current which must be added, in the electrodynamic equations of the exciting wave, to the aetherial displacement current. The velocity of propagation is thus altered to c ', where c ' -2 = c -2 (1-4 π N e 2 c 2 / mp 2 )


1998 ◽  
Vol 370 ◽  
pp. 271-296 ◽  
Author(s):  
J. GROENEWEG ◽  
G. KLOPMAN

The generalized Lagrangian mean (GLM) formulation is used to describe the interaction of waves and currents. In contrast to the more conventional Eulerian formulation the GLM description enables splitting of the mean and oscillating motion over the whole depth in an unambiguous and unique way, also in the region between wave crest and trough. The present paper deals with non-breaking long-crested regular waves on a current using the GLM formulation coupled with a WKBJ-type perturbation-series approach. The waves propagate under an arbitrary angle with the current direction. The primary interest concerns nonlinear changes in the vertical distribution of the mean velocity due to the presence of the waves, but modifications of the orbital velocity profiles, due to the presence of a current, are considered as well. The special case of no initial current, where waves induce a so-called drift velocity or mass-transport velocity, is also studied.


Sign in / Sign up

Export Citation Format

Share Document