Vortex-Induced Vibrations of a Cylinder at Subcritical Reynolds Number

Author(s):  
Yoann Jus ◽  
Elisabeth Longatte ◽  
Jean-Camille Chassaing ◽  
Pierre Sagaut

The present work focusses on the numerical study of Vortex-Induced Vibrations (VIV) of an elastically mounted cylinder in a cross flow at moderate Reynolds numbers. Low mass-damping experimental studies show that the dynamic behavior of the cylinder exhibits a three-branch response model, depending on the range of the reduced velocity. However, few numerical simulations deal with accurate computations of the VIV amplitudes at the lock-in upper branch of the bifurcation diagram. In this work, the dynamic response of the cylinder is investigated by means of three-dimensional Large Eddy Simulation (LES). An Arbitrary Lagrangian Eulerian framework is employed to account for fluid solid interface boundary motion and grid deformation. Numerous numerical simulations are performed at a Reynolds number of 3900 for both no damping and low-mass damping ratio and various reduced velocities. A detailed physical analysis is conducted to show how the present methodology is able to capture the different VIV responses.

Author(s):  
Murilo M. Cicolin ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of amplitude of vibration and drag force are presented for models with low mass and damping which are free to respond in the cross-flow direction. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the peak response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. All the three meshes have increased drag when compared with that of the bare cylinder. Reynolds number ranged from 5,000 to 25,000 and reduced velocity was varied between 2 and 15.


2016 ◽  
Author(s):  
Mohammad Mobasher Amini ◽  
Antonio Carlos Fernandes

Numerous experimental and numerical studies have been carried out to better understand and to improve prediction of cylinder VIV (vortex Induced Vibration) phenomenon. The behavior of cylinder due to in-line vibration (VIVx) has been neglected in the earlier studies because of its lower amplitude in comparison with cross flow vibration (VIVy). However, some researchers have studied VIVx in 2DOF along with VIVy. Recent investigations show that response amplitude of structure caused by VIVx is large enough to bring it to consideration. This study focuses on understanding the origin and prediction of VIVx amplitude exclusively in 1DOF and subcritical flow regime. The experiments were performed in current channel on bare circular cylinder with low mass-damping ratio in Reynolds number range Re = 10000 ∼ 45000.


Author(s):  
Murilo M. Cicolin ◽  
Cesar M. Freire ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of the dynamic response are presented for models with low mass and damping which are free to respond in the cross-flow direction. Reynolds number ranged from 1,000 to 10,000 and reduced velocity was varied between 2 and 13. Also presented are measurements of the wake of static models with Particle Image Velocimetry (PIV) at Reynolds number equal to 4000. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. Visualisation of the flow by PIV around static cylinders revealed that all suppressors disrupt the vortex shedding and increase the formation length when compared to the bare cylinder. The VT mesh, which presented the best suppression, also presented the largest vortex formation length.


2014 ◽  
Author(s):  
Murilo M. Cicolin ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of the dynamic response are presented for models with low mass and damping which are free to respond in the cross-flow direction. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. Reynolds number ranged from 1,000 to 10,000 and reduced velocity was varied between 2 and 13.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Y. Jus ◽  
E. Longatte ◽  
J.-C. Chassaing ◽  
P. Sagaut

The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier–Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.


2015 ◽  
Vol 782 ◽  
pp. 300-332 ◽  
Author(s):  
Fangfang Xie ◽  
Yue Yu ◽  
Yiannis Constantinides ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number $100\leqslant \mathit{Re}\leqslant 10\,000$. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity $U^{\ast }=4.65$, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity $U^{\ast }=3.5,4.65,6$, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number.


Author(s):  
Jamison L. Szwalek ◽  
Carl M. Larsen

In-line vibrations have been noted to have an important contribution to the fatigue of free spanning pipelines. Still, in-line contributions are not usually accounted for in current VIV prediction models. The present study seeks to broaden the current knowledge regarding in-line vibrations by expanding the work of Aronsen (2007) to include possible Reynolds number effects on pure in-line forced, sinusoidal oscillations for four Reynolds numbers ranging from 9,000 to 36,200. Similar tests were performed for pure cross-flow forced motion as well, mostly to confirm findings from previous research. When experimental uncertainties are accounted for, there appears to be little dependence on Reynolds number for all three hydrodynamic coefficients considered: the force in phase with velocity, the force in phase with acceleration, and the mean drag coefficient. However, trends can still be observed for the in-line added mass in the first instability region and for the transition between the two instability regions for in-line oscillations, and also between the low and high cross-flow added mass regimes. For Re = 9,000, the hydrodynamic coefficients do not appear to be stable and can be regarded as highly Reynolds number dependent.


Author(s):  
Ting Wang ◽  
Mingjie Lin ◽  
Ronald S. Bunker

Experimental studies on heat transfer and flow structure in confined impingement jets were performed. The objective of this study was to investigate the detailed heat transfer coefficient distribution on the jet impingement target surface and flow structure in the confined cavity. The distribution of heat transfer coefficients on the target surface was obtained by employing the transient liquid crystal method coupled with a 3-D inverse transient conduction scheme under Reynolds number ranging from 1039 to 5175. The results show that the average heat transfer coefficients increased linearly with the Reynolds number as Nu = 0.00304 Pr0.42Re. The effects of cross flow on heat transfer were investigated. The flow structure were analyzed to gain insight into convective heat transfer behavior.


Sign in / Sign up

Export Citation Format

Share Document