The Use of Reclaimed Asphalt Pavement Materials and Warm-Mix Asphalt Mixtures in the South-Central States: Challenges and Limitations

Tran-SET 2020 ◽  
2021 ◽  
Author(s):  
Farah Zaremotekhases ◽  
Husam Sadek ◽  
Marwa Hassan ◽  
Charles Berryman ◽  
Mohammad I. Hossain
2020 ◽  
Vol 8 (2) ◽  
pp. 15-26
Author(s):  
Hasan H Joni ◽  
Aqeel Y M Alkhafaji

Warm mix Asphalt (WMA) could be mixed and used in paving at low temperatures to minimize the consumption of energy and the emissions of greenhouse gas. Recycled Asphalt pavement (RAP) could save Asphaltic cement and aggregate, which could achieve the better effects of recycling. However, both of the two WMA and RAP technologies have some deficiencies. Warm mix Asphalt and Reclaimed Asphalt pavement (WMA-RAP) technique may solve these issues and deficiencies when they are utilized together. This study investigated the implementations of WMA-RAP and its impacts on the performance of the Asphalt mixture. Under the framework of this study, four percentages of RAP (0%, 20%, 30%, and 40%) were added to the hot mix Asphalt (HMA) and WMA containing 4% Sasobit to study the impact of increasing RAP content on Marshall stability and moisture resistance of Asphalt mixtures. In summary, the Marshall stability of HMA and WMA mixtures is higher than the control mixtures. A small decrease in moisture resistance of both (HMA and WMA) containing RAP comparing to control mixtures Asphalt was observed, as shown by reduced the tensile strength ratios (TSR), but it is still much higher than the minimum of 80%.


2016 ◽  
Vol 43 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Xuan Dai Lu ◽  
Mofreh Saleh

Using reclaimed asphalt pavement (RAP) increases the sustainability benefits and can enhance the performance of warm mix asphalt (WMA) compared to traditional hot mix asphalt (HMA). However, the RAP content is generally limited in WMA because adding high RAP content may reduce the performance of WMA. In this paper, the authors studied the possibility of incorporating high RAP content from 25 to 70% by mass of WMA by using Evotherm as an additive. Laboratory performance of WMA–RAP mixtures was characterized and compared to a control HMA in terms of moisture susceptibility, rutting resistance, and fatigue characterization. Test results showed that Evotherm greatly improved the moisture resistance of WMA–RAP mixtures compared to HMA. Increasing RAP content made WMA–RAP mixtures stiffer and enhanced the rutting resistance, but decreased the fatigue resistance of the mixtures. Therefore, the maximum RAP content needs to be determined to ensure balance between the fatigue and rutting characteristics of asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document