The Modelling of Short Waves in Shallow Waters. Comparison of Numerical Models Based on Boussinesq and Serre Equations

Author(s):  
M. Brocchini ◽  
M. Drago ◽  
L. Iovenitti
Author(s):  
Costanza Aricò ◽  
Carmelo Nasello

The shallow water equations are widely applied for the simulation of flow routing in rivers and floodplains, as well as for flood inundation mapping. From a mathematical point of view, they are a hyperbolic system of nonlinear partial differential equations, whose numerical integration is sometimes computationally burdensome. For this reason, the interest of many researchers has been focused on the study of simplified forms of the original set of equations, which requires less computational effort. One of the most commonly applied simplifications consists in neglecting the inertial terms, which changes the hyperbolic model to a parabolic one. The effects of such a choice on the outputs of the simulations of flooding events are controversial and an important topic of debate. In the present paper, two numerical models, recently proposed for the solution of the complete and zero-inertia forms of the shallow waters equations, are applied to several unsteady flow routing scenarios. We simulate synthetic and laboratory studies, starting from very simple geometries and moving towards complex topographies. Analyzing the role of the terms in the momentum equations, we try to understand the effect, on the computed results, of neglecting the inertial terms in the zero-inertia formulation. We analyze the computational costs.


1994 ◽  
Vol 17 (4) ◽  
pp. 549-564 ◽  
Author(s):  
M. Brocchini ◽  
M. Drago ◽  
L. Iovenitti
Keyword(s):  

1984 ◽  
Vol 1 (19) ◽  
pp. 72 ◽  
Author(s):  
H. Schaper ◽  
W. Sielke

Numerical models of short waves in shallow water, which are of particular interest for the calculation of the wave climate in harbours and coastal areas, have been presented by Abbott et al. (1978) and by Hauguel (1980). These models are based on the solution of the Boussinesq or Serre type equations. A recent discussion of the range of application for the equations has been presented by McCowan (1982). Nevertheless, there is some uncertainty as to which terms in the differential equations are of importance, and how they are to be approximated. Therefore, no final judgement can presently be made on the accuracy and credibility of the solutions. Research on such models is still in progress and is of high theoretical and practical interest. Some of the aspects of current research relate to the handling of nonlinear terms, the non-reflecting boundary conditions and the transfer capability of the models for spectral input. This paper will reflect on these points.


2019 ◽  
Vol 2 (1) ◽  
pp. 11-14
Author(s):  
Wahyu Adi

Pulau Kecil Gelasa merupakan daerah yang belum banyak diteliti. Pemetaan ekosistem di pulau kecil dilakukan dengan bantuan citra Advanced Land Observing Satellite (ALOS). Penelitian terdahulu diketahui bahwa ALOS memiliki kemampuan memetakan terumbu karang dan padang lamun di perairan dangkal serta mampu memetakan kerapatan penutupan vegetasi. Metode interpretasi citra menggunakan alogaritma indeks vegetasi pada citra ALOS yaitu NDVI (Normalized Difference Vegetation Index), serta pendekatan Lyzengga untuk mengkoreksi kolom perairan. Hasil penelitian didapatkan luasan Padang Lamun di perairan dangkal 41,99 Ha, luasan Terumbu Karang 125,57 Ha. Hasil NDVI di daratan/ pulau kecil Gelasa untuk Vegetasi Rapat seluas 47,62 Ha; luasan penutupan Vegetasi Sedang 105,86 Ha; dan penutupan Vegetasi Jarang adalah 34,24 Ha.   Small Island Gelasa rarely studied. Mapping ecosystems on small islands with the image of Advanced Land Observing Satellite (ALOS). Previous research has found that ALOS has the ability to map coral reefs and seagrass beds in shallow water, and is able to map vegetation cover density. The method of image interpretation uses the vegetation index algorithm in the ALOS image, NDVI (Normalized Difference Vegetation Index), and the Lyzengga approach to correct the water column. The results of the study were obtained in the area of Seagrass Padang in the shallow waters of 41.99 ha, the area of coral reefs was 125.57 ha. NDVI results on land / small islands Gelasa for dense vegetation of 47.62 ha; area of Medium Vegetation coverage 105.86 Ha; and the coverage of Rare Vegetation is 34.24 Ha.


2020 ◽  
Vol 82 ◽  
pp. 149-160
Author(s):  
N Kargapolova

Numerical models of the heat index time series and spatio-temporal fields can be used for a variety of purposes, from the study of the dynamics of heat waves to projections of the influence of future climate on humans. To conduct these studies one must have efficient numerical models that successfully reproduce key features of the real weather processes. In this study, 2 numerical stochastic models of the spatio-temporal non-Gaussian field of the average daily heat index (ADHI) are considered. The field is simulated on an irregular grid determined by the location of weather stations. The first model is based on the method of the inverse distribution function. The second model is constructed using the normalization method. Real data collected at weather stations located in southern Russia are used to both determine the input parameters and to verify the proposed models. It is shown that the first model reproduces the properties of the real field of the ADHI more precisely compared to the second one, but the numerical implementation of the first model is significantly more time consuming. In the future, it is intended to transform the models presented to a numerical model of the conditional spatio-temporal field of the ADHI defined on a dense spatio-temporal grid and to use the model constructed for the stochastic forecasting of the heat index.


2003 ◽  
Vol 59 (3-4) ◽  
pp. 10
Author(s):  
D. Yu. Kulik ◽  
S. L. Senkevich ◽  
Victor Ivanovich Tkachenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document