scholarly journals Comparative Analyses between The Zero-Inertia and Fully Dynamic Models of the Shallow Waters Equations for Unsteady Overland Flow Propagation

Author(s):  
Costanza Aricò ◽  
Carmelo Nasello

The shallow water equations are widely applied for the simulation of flow routing in rivers and floodplains, as well as for flood inundation mapping. From a mathematical point of view, they are a hyperbolic system of nonlinear partial differential equations, whose numerical integration is sometimes computationally burdensome. For this reason, the interest of many researchers has been focused on the study of simplified forms of the original set of equations, which requires less computational effort. One of the most commonly applied simplifications consists in neglecting the inertial terms, which changes the hyperbolic model to a parabolic one. The effects of such a choice on the outputs of the simulations of flooding events are controversial and an important topic of debate. In the present paper, two numerical models, recently proposed for the solution of the complete and zero-inertia forms of the shallow waters equations, are applied to several unsteady flow routing scenarios. We simulate synthetic and laboratory studies, starting from very simple geometries and moving towards complex topographies. Analyzing the role of the terms in the momentum equations, we try to understand the effect, on the computed results, of neglecting the inertial terms in the zero-inertia formulation. We analyze the computational costs.

Author(s):  
M. A. Millán ◽  
R. Galindo ◽  
A. Alencar

AbstractCalculation of the bearing capacity of shallow foundations on rock masses is usually addressed either using empirical equations, analytical solutions, or numerical models. While the empirical laws are limited to the particular conditions and local geology of the data and the application of analytical solutions is complex and limited by its simplified assumptions, numerical models offer a reliable solution for the task but require more computational effort. This research presents an artificial neural network (ANN) solution to predict the bearing capacity due to general shear failure more simply and straightforwardly, obtained from FLAC numerical calculations based on the Hoek and Brown criterion, reproducing more realistic configurations than those offered by empirical or analytical solutions. The inputs included in the proposed ANN are rock type, uniaxial compressive strength, geological strength index, foundation width, dilatancy, bidimensional or axisymmetric problem, the roughness of the foundation-rock contact, and consideration or not of the self-weight of the rock mass. The predictions from the ANN model are in very good agreement with the numerical results, proving that it can be successfully employed to provide a very accurate assessment of the bearing capacity in a simpler and more accessible way than the existing methods.


Author(s):  
Fengtao Bai ◽  
Qi Guo ◽  
Kyle Root ◽  
Clay Naito ◽  
Spencer Quiel

Tunnels are a critical component of our transportation infrastructure, and unexpected damage to a tunnel can significantly and adversely impact the functionality of a transportation network. Tunnel systems are vulnerable to potential threats of intentional and accidental blast events because of their relatively unrestricted public access. These events can lead to spalling and breach of the tunnel liner which, depending on the surrounding media, can result in local damage and progressive collapse of the tunnel. Current approaches for evaluating blast-induced damage to a tunnel liner either require significant computational effort or oversimplification such that accurate spatial distributions of damage cannot be obtained. This study presents an effective approach to predict and map the damage to a reinforced concrete liner of a roadway tunnel from various explosive threat sizes and tunnel geometries. A literature review of existing studies is conducted, and potential scenarios of blast events are examined with varying charge position and size. Rectangular, horseshoe, and circular tunnel geometries, each with the same traffic throughput, are evaluated. An efficient analytical approach to determine the spatial distribution of blast-induced spall and breach damage is presented and shows good agreement with numerical models analyzed in LS-DYNA. The proposed approach is then used to examine the relationship between increasing blast hazard intensity and the extent of spall and breach damage. Inflection points in this relationship can be used to identify hazard levels at which a progressive collapse evaluation would be warranted.


2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
F. Caputo ◽  
A. De Luca ◽  
A. Greco ◽  
A. Marro ◽  
A. Apicella ◽  
...  

Usually during the design of landing gear, simplified Finite Element (FE) models, based on one-dimensional finite elements (stick model), are used to investigate the in-service reaction forces involving each subcomponent. After that, the design of such subcomponent is carried out through detailed Global/Local FE analyses where, once at time, each component, modelled with three-dimensional finite elements, is assembled into a one-dimensional finite elements based FE model, representing the whole landing gear under the investigated loading conditions. Moreover, the landing gears are usually investigated also under a kinematic point of view, through the multibody (MB) methods, which allow achieving the reaction forces involving each subcomponent in a very short time. However, simplified stick (FE) and MB models introduce several approximations, providing results far from the real behaviour of the landing gear. Therefore, the first goal of this paper consists of assessing the effectiveness of such approaches against a 3D full-FE model. Three numerical models of the main landing gear of a regional airliner have been developed, according to MB, “stick,” and 3D full-FE methods, respectively. The former has been developed by means of ADAMS® software, the other two by means of NASTRAN® software. Once this assessment phase has been carried out, also the Global/Local technique has verified with regard to the results achieved by the 3D full-FE model. Finally, the dynamic behaviour of the landing gear has been investigated both numerically and experimentally. In particular, Magnaghi Aeronautica S.p.A. Company performed the experimental test, consisting of a drop test according to EASA CS 25 regulations. Concerning the 3D full-FE investigation, the analysis has been simulated by means of Ls-Dyna® software. A good level of accuracy has been achieved by all the developed numerical methods.


2020 ◽  
Author(s):  
Bernd Schalge ◽  
Gabriele Baroni ◽  
Barbara Haese ◽  
Daniel Erdal ◽  
Gernot Geppert ◽  
...  

Abstract. Coupled numerical models, which simulate water and energy fluxes in the subsurface-land surface-atmosphere system in a physically consistent way are a prerequisite for the analysis and a better understanding of heat and matter exchange fluxes at compartmental boundaries and interdependencies of states across these boundaries. Complete state evolutions generated by such models may be regarded as a proxy of the real world, provided they are run at sufficiently high resolution and incorporate the most important processes. Such a virtual reality can be used to test hypotheses on the functioning of the coupled terrestrial system. Coupled simulation systems, however, face severe problems caused by the vastly different scales of the processes acting in and between the compartments of the terrestrial system, which also hinders comprehensive tests of their realism. We used the Terrestrial Systems Modeling Platform TerrSysMP, which couples the meteorological model COSMO, the land-surface model CLM, and the subsurface model ParFlow, to generate a virtual catchment for a regional terrestrial system mimicking the Neckar catchment in southwest Germany. Simulations for this catchment are made for the period 2007–2015, and at a spatial resolution of 400 m for the land surface and subsurface and 1.1 km for the atmosphere. Among a discussion of modelling challenges, the model performance is evaluated based on real observations covering several variables of the water cycle. We find that the simulated (virtual) catchment behaves in many aspects quite close to observations of the real Neckar catchment, e.g. concerning atmospheric boundary-layer height, precipitation, and runoff. But also discrepancies become apparent, both in the ability of the model to correctly simulate some processes which still need improvement such as overland flow, and in the realism of some observation operators like the satellite based soil moisture sensors. The whole raw dataset is available for interested users. The dataset described here is available via the CERA database (Schalge et al., 2020): https://doi.org/10.26050/WDCC/Neckar_VCS_v1.


1990 ◽  
Vol 68 (9) ◽  
pp. 760-767 ◽  
Author(s):  
J. A. Tuszynski ◽  
M. Otwinowski

In this paper we investigate the family of nonlinear partial differential equations used to describe the kinetics of critical phenomena within the Landau–Ginzburg model. An analysis of the recently obtained symmetry-reduction results for a number of such equations is provided from the point of view of pattern formation at criticality. Various possibilities occur depending on the choice of control parameters. An illustration is provided using several physical examples such as metamagnets and liquid crystals.


2021 ◽  
Author(s):  
Meng Li ◽  
Casper Pranger ◽  
Ylona van Dinther

<p>Numerical models are well-suited to overcome limited spatial-temporal observations to understand earthquake sequences, which is fundamental to ultimately better assess seismic hazard. However, high-resolution numerical models in 3D are computationally time and memory consuming. This is not optimal if the aspects of lateral or depth variations within the results are not needed to answer a particular objective. In this study we quantify and summarize the limitations and advantages for simulating earthquake sequences in all spatial dimensions.</p><p> </p><p>We simulate earthquake sequences on a strike-slip fault with rate-and-state friction from 0D to 3D using both quasi-dynamic and fully dynamic approaches. This cross-dimensional comparison is facilitated by our newly developed, flexible code library <em>Garnet</em>, which adopts a finite difference method with a fully staggered grid. We have validated our models using problems BP1-QD & FD and BP4-QD & FD of the SEAS (Sequences of Earthquakes and Aseismic Slip) benchmarks from the Southern California Earthquake Center.</p><p> </p><p>Our results demonstrate that lower-dimensional/quasi-dynamic models are qualitatively similar in terms of earthquake cycle characteristics to their higher-dimensional/fully-dynamic counterparts, while they could be hundreds to millions times faster at the same time. Quantitatively, we observe that certain earthquake parameters, such as stress drop and fracture energy release, can be accurately reproduced in each of these simpler models as well. However, higher dimensional models generally produce lower maximum slip velocities and hence longer coseismic durations. This is mainly due to lower rupture speeds, which result from increased energy consumption along added rupture front directions. In the long term, higher dimensional models produce shorter recurrence interval and hence smaller total slip, which is mainly caused by the higher interseismic stress loading rate inside the nucleation zone. The same trend is also observed when comparing quasi-dynamic models to fully dynamic ones. We extend a theoretical calculation that to first order approximates the aforementioned physical observables in 3D to all other dimensions. These theoretical considerations confirm the same trend as what is observed for stress drop, recurrence interval and total slip across dimensions. These findings on similarities and differences of different dimensional models and a corresponding quantification of computational efficiency can guide model design and facilitate result interpretation in future studies.</p>


2014 ◽  
Vol 1036 ◽  
pp. 493-498 ◽  
Author(s):  
Radu Vilău ◽  
Marin Marinescu ◽  
Octavian Alexa ◽  
Florin Oloeriu ◽  
Marian Truta

The paper deals with a new approach in data analysis of a measured mechanical parameter. The classic approach is mainly based on the deterministic statistics that cant cover the whole field of a complete analysis. The stochastic approach, to be used in this paper, offers far more information about the mechanical parameter and can take into account the non-linearity of the signal, eventually, the mechanical parameter itself. Starting from the point of view that, in real life, there is no steady evolution of any parameter, we decide to take into account the importance of the non-linear components of any signal. After e thorough investigation, we hope we could make the difference between the noise, as non-linear components of the measured parameter, and the useful non-linear components (e.g. important shocks, typically met within a vehicles transmission). Using the stochastic modeling procedures, we aimed at issuing comprehensive, accurate and valuable dynamic models of the phenomenon. These models cam be used in a large variety of situations, from describing the process, to evaluating the health of a mechanical system and to controlling a real-time process based on the pre-set models (previously drawing a map of the systems normal behavior and permanently assessing the deviation from it and acting accordingly). The data were measured within the transmission system of a military vehicle. Specifically, we have gathered information about torque and angular speed of different shafts of the driveline. As everybody knows, the power flows within any vehicles transmission in transient modes mainly and it is accompanied by plenty of noise. It is rather challenging to separate (filter) the useful signal form the noise but, on the other hand, it is the only way to achieve useful data. Therefore, a spectral analysis is a must, but not the conventional one, which has its drawbacks, but a multi-spectral one, which is able to insulate the noise. Moreover, starting from the analysis developed with this method, mathematical models, both in discrete and continuos time can be achieved. It is easy to notice that the models that we have achieved are featured by a very good accuracy. We could push the data processing even further, getting generalized models that provide the needs we have mentioned before, with respect to the mapping of a normal (averaged) behavior of a system, to be used in controlling procedures.


2017 ◽  
Vol 24 (15) ◽  
pp. 3348-3369 ◽  
Author(s):  
L Van Belle ◽  
D Brandolisio ◽  
E Deckers ◽  
S Jonckheere ◽  
C Claeys ◽  
...  

Joined structures are of great industrial relevance. The dynamic effects of joints are, however, often practically difficult to accurately account for in numerical models, as they often lead to local changes in stiffness and damping. This paper discusses the comparison between measurements and simulations of joined panels considering four different joining techniques: adhesive bonding, metal inert gas welding, resistance spot welding and flow drill screwing. An experimental modal analysis is performed on the different systems and the power injection method is applied to determine the loss factors of single plate systems and their joined counterparts. The joined panels are modeled in a holistic simulation environment with particular focus on the joining region, by the application of predefined and generic joint models. A very good agreement is obtained between the simulated dynamic behavior and the experimental results, showing that an accurate representation of the joints has been obtained.


Sign in / Sign up

Export Citation Format

Share Document