Pemetaan Pulau Kecil Gelasa Kabupaten Bangka Tengah

2019 ◽  
Vol 2 (1) ◽  
pp. 11-14
Author(s):  
Wahyu Adi

Pulau Kecil Gelasa merupakan daerah yang belum banyak diteliti. Pemetaan ekosistem di pulau kecil dilakukan dengan bantuan citra Advanced Land Observing Satellite (ALOS). Penelitian terdahulu diketahui bahwa ALOS memiliki kemampuan memetakan terumbu karang dan padang lamun di perairan dangkal serta mampu memetakan kerapatan penutupan vegetasi. Metode interpretasi citra menggunakan alogaritma indeks vegetasi pada citra ALOS yaitu NDVI (Normalized Difference Vegetation Index), serta pendekatan Lyzengga untuk mengkoreksi kolom perairan. Hasil penelitian didapatkan luasan Padang Lamun di perairan dangkal 41,99 Ha, luasan Terumbu Karang 125,57 Ha. Hasil NDVI di daratan/ pulau kecil Gelasa untuk Vegetasi Rapat seluas 47,62 Ha; luasan penutupan Vegetasi Sedang 105,86 Ha; dan penutupan Vegetasi Jarang adalah 34,24 Ha.   Small Island Gelasa rarely studied. Mapping ecosystems on small islands with the image of Advanced Land Observing Satellite (ALOS). Previous research has found that ALOS has the ability to map coral reefs and seagrass beds in shallow water, and is able to map vegetation cover density. The method of image interpretation uses the vegetation index algorithm in the ALOS image, NDVI (Normalized Difference Vegetation Index), and the Lyzengga approach to correct the water column. The results of the study were obtained in the area of Seagrass Padang in the shallow waters of 41.99 ha, the area of coral reefs was 125.57 ha. NDVI results on land / small islands Gelasa for dense vegetation of 47.62 ha; area of Medium Vegetation coverage 105.86 Ha; and the coverage of Rare Vegetation is 34.24 Ha.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Siqin Tong ◽  
Yuhai Bao ◽  
Rigele Te ◽  
Qiyun Ma ◽  
Si Ha ◽  
...  

This research is based on the standardized precipitation evapotranspiration index (SPEI) and normalized difference vegetation index (NDVI) which represent the drought and vegetation condition on land. Take the linear regression method and Pearson correlation analysis to study the spatial and temporal evolution of SPEI and NDVI and the drought effect on vegetation. The results show that (1) during 1961–2015, SPEI values at different time scales showed a downward trend; SPEI-12 has a mutation in 1997 and the SPEI value significantly decreased after this year. (2) During 2000–2015, the annual growing season SPEI has an obvious upward trend in time and the apparent wetting spatially. (3) In the recent 16 years, the growing season NDVI showed an upward trend and more than 80% of the total area’s vegetation increased in Xilingol. (4) Vegetation coverage in Xilingol grew better in humid years and opposite in arid years. SPEI and NDVI had a significant positive correlation; 98% of the region showed positive correlation, indicating that meteorological drought affects vegetation growth more in arid and semiarid region. (5) The effect of drought on vegetation has lag effect, and the responses of different grassland types to different scales of drought were different.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251015
Author(s):  
Guoliang Zhu ◽  
Yitian Li ◽  
Zhaohua Sun ◽  
Shinjiro Kanae

This work explores the changes in vegetation coverage and submergence time of floodplains along the middle and lower reaches of the Yangtze River (i.e., the Jingjiang River) and the relations between them. As the Three Gorges Dam has been operating for more than 10 years, the original vegetative environment has been greatly altered in this region. The two main aspects of these changes were discovered by analyzing year-end image data from remote sensing satellites using a dimidiate pixel model, based on the normalized difference vegetation index, and by calculating water level and topographic data over a distance of 360 km from 2003–2015. Given that the channels had adjusted laterally, thus exhibiting deeper and broader geometries due to the Three Gorges Dam, 11 floodplains were classified into three groups with distinctive features. The evidence shows that, the floodplains with high elevation have formed steady vegetation areas and could hardly be affected by runoff and usually occupied by humans. The low elevation group has not met the minimal threshold of submerging time for vegetation growth, and no plants were observed so far. Based on the facts summed up from the floodplains with variable elevation, days needed to spot vegetation ranges from 70 to 120 days which happened typically near 2006 and between 2008 and 2010, respectively, and a negative correlation was detected between submergence time and vegetation coverage within a certain range. Thus, floods optimized by the Three Gorges Dam have directly influenced plant growth in the floodplains and may also affect our ability to manage certain types of large floods. Our conclusions may provide a basis for establishing flood criteria to manage the floodplain vegetation and evaluating possible increases in resistance caused by high-flow flooding when these floodplains are submerged.


2020 ◽  
Vol 12 (15) ◽  
pp. 2433 ◽  
Author(s):  
Iman Rousta ◽  
Haraldur Olafsson ◽  
Md Moniruzzaman ◽  
Hao Zhang ◽  
Yuei-An Liou ◽  
...  

Drought has severe impacts on human society and ecosystems. In this study, we used data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Tropical Rainfall Measuring Mission (TRMM) sensors to examine the drought effects on vegetation in Afghanistan from 2001 to 2018. The MODIS data included the 16-day 250-m composites of the Normalized Difference Vegetation Index (NDVI) and the Vegetation Condition Index (VCI) with Land Surface Temperature (LST) images with 1 km resolution. The TRMM data were monthly rainfalls with 0.1-degree resolution. The relationship between drought and index-defined vegetation variation was examined by using time series, regression analysis, and anomaly calculation. The results showed that the vegetation coverage for the whole country, reaching the lowest levels of 6.2% and 5.5% were observed in drought years 2001 and 2008, respectively. However, there is a huge inter-regional variation in vegetation coverage in the study period with a significant rising trend in Helmand Watershed with R = 0.66 (p value = 0.05). Based on VCI for the same two years (2001 and 2008), 84% and 72% of the country were subject to drought conditions, respectively. Coherently, TRMM data confirm that 2001 and 2008 were the least rainfall years of 108 and 251 mm, respectively. On the other hand, years 2009 and 2010 were registered with the largest vegetation coverage of 16.3% mainly due to lower annual LST than average LST of 14 degrees and partially due to their slightly higher annual rainfalls of 378 and 425 mm, respectively, than the historical average of 327 mm. Based on the derived VCI, 28% and 21% of the study area experienced drought conditions in 2009 and 2010, respectively. It is also found that correlations are relatively high between NDVI and VCI (r = 0.77, p = 0.0002), but slightly lower between NDVI and precipitation (r = 0.51, p = 0.03). In addition, LST played a key role in influencing the value of NDVI. However, both LST and precipitation must be considered together in order to properly capture the correlation between drought and NDVI.


2012 ◽  
Vol 518-523 ◽  
pp. 5663-5667
Author(s):  
Shi Wei Li ◽  
Ji Long Zhang ◽  
Jian Sheng Yang

Vegetation covering situation is very important for the quality of air quality, soil and water conservation ability and soil forming in an area. By using the remote sensing image of Taiyuan Valley Plain, the application of Normalized Difference Vegetation Index (NDVI) and unsupervised classification, the vegetation coverage map which includes non-cultivated land disposition and cultivated land disposition was obtained using ERDAS Imagine software. To evaluate the accuracy of the results, 200 points were sampled randomly, the high spatial resolution remote sensing image from Google Earth was used as the reference. The overall classification accuracy is 82%, with the Kappa statistic of 0.81. By counting the totally pixel acreage, it was gotten that the vegetation coverage was 46% and the cultivated land coverage ratio was 31% in the study area.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Yaonan Zhang ◽  
Meiyu Hao ◽  
John Y. Takekawa ◽  
Fumin Lei ◽  
Baoping Yan ◽  
...  

The autumn migration routes of bar-headed geese captured before the 2008 breeding season at Qinghai Lake, China, were documented using satellite tracking data. To assess how the migration strategies of bar-headed geese are influenced by environmental conditions, the relationship between migratory routes, temperatures, and vegetation coverage at stopovers sites estimated with the Normalized Difference Vegetation Index (NDVI) were analyzed. Our results showed that there were four typical migration routes in autumn with variation in timing among individuals in start and end times and in total migration and stopover duration. The observed variation may be related to habitat type and other environmental conditions along the routes. On average, these birds traveled about 1300 to 1500 km, refueled at three to six stopover sites and migrated for 73 to 83 days. The majority of the habitat types at stopover sites were lake, marsh, and shoal wetlands, with use of some mountainous regions, and farmland areas.


2013 ◽  
Vol 2 (2) ◽  
Author(s):  
Bokiraiya Latuamury

The background of this research is the decrease of environment capacity in cacthment ecosystem, especially impact of vegetation forest on behavior streamflow. The indicators of cacthment destruction can be seen through hydrograph characteristics. Evaluation of cactment respons of flow hydrographic as an evaluation tools of river catchment responses becomes very important to analyze because it is a benchmark in determination several policy about flood, drough, sedimentation and landslide handling. The research purpose is to analyze the relationship between vegetation index NDVI (Normalized Difference Vegetation Index) and the characteristic of baseflow recession coefficient at several subcatchment areas in province of Central Java and Specific District of Yogjakarta.The method of this research is surveillance on data recording of AWLR (Automatic Water Level Recorder) and data of River Flow Measuring Stations in order to separate the baseflow by calibration curve, and image interpretation of Landsat ETM+ for the transformation of vegetation index (NDVI-Normalized Difference Vegetation Index).The analysis on recession coefficient data (Krb) and NDVI were correlated to analyze the strength of relationship between these two parameters. The results of statistical analysis on index NDVI and recession coefficient showsthat NDVI and recession coefficient value at R2 is 0.1427, F = 2.17 which is not significant at 1% significance level of 0.1646. The result shows a very weak correlation of 0.077 which mean that vegetation density (NDVI index)has a very weak control on low flows. Basically, river baseflow is a genetic component of river flow which comes from aquifer storage and/or other low flow sources. Thus, geology and soil have a significant effect on baseflow.


2018 ◽  
Vol 9 (1) ◽  
pp. 21
Author(s):  
Deny Setiady ◽  
Ediar Usman

Abstrak Secara geografis, Kepulauan Aruah merupakan gugusan pulau-pulau kecil terluar yang  terletak di perairan Selat Malaka, yang berbatasan dengan Malaysia. Metoda penelitian geologi kelautan terdiri dari, Pemetaan geologi pantai dan lepas pantai, penentuan posisi, pengukuran pasang surut, pengukuran kedalaman dasar laut dan pengukuran luas terumbu karang. Hasil pengukuran luas gugusan  Terumbu karang di sekitar Kepulauan Aruah pada waktu pasang yaitu: Pulau Jemur (31.3800 ha), Pulau Kalironggo (39.0229 ha), Pulau Sarong Alang (0.5081 ha), Pulau Pandan (3.5940 ha), Pulau Labuhan Bilik (15.5340 ha), Pulau Tukong Mas (19.4271), Pulau Pasir (25.853), Pulau Batu Adang (43.1740), Pulau Batu Berlayar (70.9140), dan Pulau Batu Mandi (9.0770 ha). Pulau Tukong Simbang terdapat 7 gugusan pulau kecil, dimana  pada saat air laut mengalami surut terendah membentuk satu kesatuan pulau dengan luas mencapai 104,9 ha. Kedalaman dasar laut di daerah penelitian maksimum 80 meter, dengan perbedaan pasang surut maksimum dan surut minimum adalah 5,9 meter di daerah penelitian. Keberadaan batuan Tersier di pantai dan terumbu karang menjadi penyangga keberadaan dan ketahanan gugusan pulau-pulau kecil. Pantai dan lepas pantai Kepulauan Aruah. Hampir seluruh bagian pinggir dari pulau-pulau kecil di sekitar Pulau Jemur dikelilingi oleh lingkungan terumbu karang, sehingga menambah pesona keindahan perairan dan pantai kepuauan Aruah.  Kata Kunci: Kepulauan Aruah, Lingkungan Terumbu Karang, Pulau terluar, dan geologi kelautan Abstract Aruah Islands located in the  Malacca Strait waters is outer islands cluster and the border Malaysia. Study method consits of coastal geology mapping positioning Low – high Tide measurenment, sea bottom measurenment and Coral reef wide measurenment. High tide coral reef cluster measurenment in Aruah archipelago are:  Jemur Island(31.3800 ha), Kalironggo (39.0229 ha), Sarong Alang  Island (0.5081 ha),  Pandan Island (3.5940 ha),  Labuhan Bilik Island (15.5340 ha), Tukong Mas Island (19.4271), Pasir Island (25.853), Batu Adang Island (43.1740), Batu Berlayar Island(70.9140), dan Batu Mandi Isand (9.0770) ha). There are seven small island Tukong Simbang Island, when low tide forming one island with 104.9 ha square. Maximum depth of seawater is 80 meter dept and differences between low tide and high tide is 5,9 meter in  study area. The existence of Tertiary rocks on the beach and coral reefs into existence and resistance as a buffer of small islands cluster. Almost all of the edges of small islands around the Jemur island is surrounded by coral reefs environment, that adding to the charm and beauty of coastal and waters Aruah Islands  Keywords. Aruah archipelago, Coral reef environment, outer island, and marine geology,


2020 ◽  
Vol 9 (6) ◽  
pp. 364
Author(s):  
Lei Zhou ◽  
Siyu Wang ◽  
Mingyi Du ◽  
Jianhua Yang ◽  
Yinuo Zhu ◽  
...  

The combined study of vegetation coverage (VC) and land use change provides important scientific guidance for the restoration and protection of arid regions. Taking Hongjian Nur (HJN) Lake in the desert region as a case study, the VC of this area was calculated using a normalized difference vegetation index (NDVI), which is based on a mixed pixel decomposition method. A grey forecasting model (GM) (1, 1) was used to predict future VC. The driving factors of VC and land use change were analyzed. The results indicate that the average VC of the whole watershed showed a gradual increase from 0.29 to 0.49 during 2000–2017. The prediction results of the GM VC showed that the greening trend is projected to continue until 2027. The area of farmland in the watershed increased significantly and its area was mainly converted from unused land, grassland, and forest. The reason for increased VC may be that the combination of the exploitation of unused land and climate change, which is contrary to the country’s sustainable development goals (SDG; goal 15). Therefore, the particularities of the local ecological environment in China’s desert area needs to be considered in the development of ecological engineering projects.


2012 ◽  
Vol 518-523 ◽  
pp. 5623-5626
Author(s):  
Guo Qing Sun ◽  
Yu Huan Ren ◽  
Meng Meng Liu ◽  
Zhu Mei Liu ◽  
Ya Lan Liu

In order to improve the efficiency and cost-saving investigation for sensitive land parcels for road route selecting, this paper demonstrates the methodology of Support Vector Machine (SVM) classification combining with the Normalized Difference Vegetation Index (NDVI) to identify the land parcels using ALOS remote sensing data. One part of the road corridor is taken as the study area in City Group of Changsha, Zhuzhou and Xiangtan, which is regarded as the two society pilot area. The results show that the high effectiveness and applicability of the method in high density vegetation coverage mountainous regions.


Author(s):  
X. Yan ◽  
J. Li ◽  
Z. Yang

Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI) images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage(FVC)in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.


Sign in / Sign up

Export Citation Format

Share Document