Research Briefs: Department of Energy Funds Research on Wave Energy

2008 ◽  
Vol 78 (12) ◽  
pp. 33-33
2013 ◽  
Vol 47 (4) ◽  
pp. 164-176 ◽  
Author(s):  
Terry Lettenmaier ◽  
Annette von Jouanne ◽  
Ean Amon ◽  
Sean Moran ◽  
Alister Gardiner

AbstractThis paper describes ocean testing of the half-scale Wave Energy Technology-New Zealand (WET-NZ) prototype wave energy converter (WEC) using the Ocean Sentinel instrumentation buoy during a 6-week deployment period in August‐October 2012. These tests were conducted by the Northwest National Marine Renewable Energy Center (NNMREC) at its Pacific Ocean test site off the coast of Newport, Oregon. The WET-NZ is the product of a research consortium between Callaghan Innovation, a New Zealand Crown Entity, and Power Projects Limited (PPL), a Wellington, New Zealand private company. The Oregon deployment was project managed by Northwest Energy Innovations (NWEI), a Portland, OR firm. NNMREC is a Department of Energy sponsored partnership between Oregon State University (OSU), the University of Washington (UW), and the National Renewable Energy Laboratory (NREL). The Ocean Sentinel instrumentation buoy is a 6-m surface buoy, developed in 2012, that provides a stand-alone electrical load, WEC generator control, and data collection for WECs being tested. The Ocean Sentinel was deployed and operated for the first time during the 2012 WET-NZ tests. During these tests, the operation of the WET-NZ was demonstrated and its performance was characterized, while also proving successful deployment and operation of the Ocean Sentinel.


2013 ◽  
Vol 47 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Annette von Jouanne ◽  
Terry Lettenmaier ◽  
Ean Amon ◽  
Ted Brekken ◽  
Reo Phillips

AbstractThis paper presents a novel Ocean Sentinel instrumentation buoy that the Northwest National Marine Renewable Energy Center (NNMREC) has developed with AXYS Technologies for the testing of wave energy converters (WECs). NNMREC is a Department of Energy-sponsored partnership among Oregon State University (OSU), the University of Washington (UW), and the National Renewable Energy Laboratory (NREL). The Ocean Sentinel instrumentation buoy is a surface buoy based on the 6-m NOMAD (Navy Oceanographic Meteorological Automatic Device) design. The Ocean Sentinel provides power analysis, data acquisition, and environmental monitoring, as well as an active converter interface to control power dissipation to an onboard electrical load. The WEC being tested and the instrumentation buoy are moored with approximately 125 meters separation; connected by a power and communication umbilical cable. The Ocean Sentinel was completed in 2012 and was deployed for the testing of a WEC at the NNMREC open-ocean test site, north of Newport, OR, during August and September of 2012.


Author(s):  
Diana Bull ◽  
Ann Dallman

A detailed methodology was used to select the sea states tested in the final stage of the Wave Energy Prize (WEPrize), a public prize challenge sponsored by the U.S. Department of Energy [1]. The winner was selected based on two metrics: a threshold value expressing the benefit to effort ratio (ACE metric) and a second metric which included hydrodynamic performance-related quantities (HPQ). HPQ required additional sea states to query aspects of the techno-economic performance not addressed by ACE. Due to the nature of the WEPrize, limited time was allotted to each contestant for testing and thus a limitation on the total sea states was required. However, the applicability of these sea states was required to encompass seven deployment locations representative of the United States West Coast and Hawaii. A cluster analysis was applied to scatter diagrams in order to determine a subset of sea states that could be scaled to find the average annual power flux at each wave climate for the ACE metric. Four additional sea states were selected, including two highly energetic sea states and two bimodal sea states, to evaluate HPQ. These sea states offer a common experimental testing platform for performance in United States deployment climates.


Author(s):  
Akshith Subramanian ◽  
Gagee Raut ◽  
Navid Goudarzi

Wave Energy is a predictable and stable form of renewable energies. In this work, the wave energy potential along the North Carolina shore is calculated using six-year (2012–2017) National Buoy Database (NDBC). The wave data from two buoys (US 192 and US 430) were collected and the average significant wave height (HS) and corresponding time period (T) were determined. The Reference Model 3 (RM3) defined by Department of Energy (DOE) was used to explore the potential power generation from wave energy. Simulations were setup on WEC-Sim, an open-source code based on MATLAB developed by the DOE. A six-degree of freedom solver was used to obtain the results for heave and pitch forces for the float. Dynamic responses were calculated by solving equations of motion based on Cummins’ equation about the body center of gravity. Waves were modeled as irregular ocean waves using North Carolina shore wave data. The preliminary results obtained the heave and surge forces on RM3 and the body reaction forces. The results from this work can be used for determination of RM3 performance for NC shore.


Sign in / Sign up

Export Citation Format

Share Document