Cut Slope Stabilization Using Rock Bolts

1979 ◽  
Vol 105 (1) ◽  
pp. 31-39
Author(s):  
Bruce M. Camlin ◽  
James W. Richards ◽  
Gerald L. Branthoover
1988 ◽  
pp. 135-138
Author(s):  
Toshikazu Kawamoto ◽  
Ö. AYDAN ◽  
Kazuo NISHIMURA ◽  
Minoru YAMAMOTO

IFCEE 2015 ◽  
2015 ◽  
Author(s):  
Lei Wang ◽  
Wenping Gong ◽  
Zhe Luo ◽  
Sara Khoshnevisan ◽  
C. Hsein Juang

Author(s):  
Robbin B. Sotir ◽  
Michael A. McCaffrey

Construction of a 274.5-m-long (900-ft) and 24.4-m-high (80-ft) soil (upper) and rock (lower) cut slope on the eastbound side of the Massachusetts Turnpike at mile mark 94.1 eastbound for the proposed interchange with Route 146 combined conventional engineering and soil bioengineering solutions. Geologic mapping identified three sections (east, middle, and west) that had different patterns of rock discontinuities, which controlled rock cut design. Each required a different slope design for a stable rock cut. The soil cut design was controlled by soil density, groundwater seepage, and erosion potential from seepage and surface runoff. Soil bioengineering was used to control surface drainage and erosion on the cut soil slope above the 12.2-m-high (40-ft) rock cut and rapidly revegetate the disturbed soil slope, which addressed the project's environmental and aesthetic goals. Conventional crushed-stone drains augment the living soil bioengineering drains. Woody vegetation was used to reinforce the cut soil slope surface. Branches from native living woody plants were installed into the slope face, offering surface reinforcement. Root development along branch lengths provided additional reinforcement. The hydrologic regime was modified as growing plants remove moisture through transpiration and embedded bundled branches channel water off the slope. Basic soil bioengineering stabilization principles by using live fascines and brush layers for soil and rock cut slope stabilization are presented. Discussions include preconstruction conditions, environmental benefits, vegetation harvesting and design, installation, and performance as of October 1996. Cut slope stabilization through soil bioengineering produced an environmentally, aesthetically, and mechanically sound solution, illustrating the benefits of combined technologies.


2016 ◽  
Vol 12 (4) ◽  
Author(s):  
Ari Sandyavitri

This paper objectives are to; (i) identification of risky slopes (within 4 Provinces in Sumatra including Provinces of Riau, West Sumatra, Jambi and South Sumatra encompassing 840 kms of the “Jalan Lintas Sumatra” highway) based on Rockfall Hazard Rating Systems (RHRS) method; (ii) developing alternatives to stabilize slope hazards, and (iii) selecting appropriate slopes stabilization techniques based on both proactive approach and value engineering one. Based on the Rockfall Hazard Rating Systems (RHRS) method, it was identified 109 steep slopes prone to failure within this highway section. Approximately, 15 slopes were identified as potential high-risk slopes (RHRS scores were calculated >200 points). Based on the proactive approach, seven riskiest slopes ware identified. The preferred stabilization alternatives to remedy most of these slopes are suggested as follow; either (i) a combination of retaining wall and drainage, or (ii) gabion structure and drainage. However, different approaches may yield different results, there are at least 2 main consideration in prioritizing slope stabilization; (i) based on the riskiest slopes, and(ii) the least expensive stabilization alternatives.


2021 ◽  
Vol 11 (16) ◽  
pp. 7176
Author(s):  
Guillermo Cobos ◽  
Miguel Ángel Eguibar ◽  
Francisco Javier Torrijo ◽  
Julio Garzón-Roca

This case study presents the engineering approach conducted for stabilizing a landslide that occurred at “El Portalet” Pass in the Central Spanish Pyrenees activated due to the construction of a parking lot. Unlike common slope stabilization cases, measures projected here were aimed at slowing and controlling the landslide, and not completely stopping the movement. This decision was taken due to the slow movement of the landslide and the large unstable mass involved. The degree of success of the stabilization measures was assessed by stability analyses and data obtained from different geotechnical investigations and satellite survey techniques such as GB-SAR and DinSAR conducted by different authors in the area under study. The water table was found to be a critical factor in the landslide’s stability, and the tendency of the unstable slope for null movement (total stability) was related to the water table lowering process, which needs more than 10 years to occur due to regional and climatic issues. Results showed a good performance of the stabilization measures to control the landslide, demonstrating the effectiveness of the approach followed, and which became an example of a good response to the classical engineering duality cost–safety.


Author(s):  
Are Håvard Høien ◽  
Charlie C. Li ◽  
Ning Zhang

AbstractRock bolts are one of the main measures used to reinforce unstable blocks in a rock mass. The embedment length of fully grouted bolts in the stable and competent rock stratum behind the unstable rock blocks is an important parameter in determining overall bolt length. It is required that the bolt section in the stable stratum must be longer than the critical embedment length to ensure the bolt will not slip when loaded. Several series of pull tests were carried out on fully grouted rebar bolts to evaluate the pull-out mechanics of the bolts. Bolt specimens with different embedment lengths and water/cement ratios were installed in either a concrete block of one cubic meter or in steel cylinders. Load displacement was recorded during testing. For some of the bolts loaded beyond the yield load, permanent plastic steel deformation was also recorded. Based on the test results, three types of failure mechanisms were identified, corresponding to three loading conditions: (1) pull-out below the yield strength of the bolt steel; (2) pull-out between the yield and ultimate loads, that is, during strain hardening of the steel; and (3) steel failure at the ultimate load. For failure mechanisms 2 and 3, it was found that the critical embedment length of the bolt included three components: an elastic deformation length, a plastic deformation length and a completely debonded length due to the formation of a failure cone at the borehole collar.


Sign in / Sign up

Export Citation Format

Share Document