scholarly journals Size‐dependent homogeneous linewidth ofZ3exciton absorption spectra in CuCl microcrystals

1991 ◽  
Vol 59 (14) ◽  
pp. 1758-1760 ◽  
Author(s):  
Tetsuro Wamura ◽  
Yasuaki Masumoto ◽  
Tomohiro Kawamura
1988 ◽  
Vol 102 ◽  
pp. 243-246
Author(s):  
J.T. Costello ◽  
W.G. Lynam ◽  
P.K. Carroll

AbstractThe dual laser-produced plasma technique for the study of ionic absorption spectra has been developed by the use of two Q-switched ruby lasers to enable independent generation of the absorbing and back-lighting plasmas. Optical pulse handling is used in the coupling cicuits to enable reproducible pulse delays from 250 nsec. to 10 msec, to be achieved. At delay times > 700 nsec. spectra of essentially pure neutral species are observed. The technique is valuable, not only for obtaining the neutral spectra of highly refractory and/or corrosive materials but also for studying behaviour of ionic species as a function of time. Typical spectra are shown in Fig. 1.


1988 ◽  
Vol 102 ◽  
pp. 71-73
Author(s):  
E. Jannitti ◽  
P. Nicolosi ◽  
G. Tondello

AbstractThe photoabsorption spectra of the carbon ions have been obtained by using two laser-produced plasmas. The photoionization cross-section of the CV has been absolutely measured and the value at threshold, σ=(4.7±0.5) × 10−19cm2, as well as its behaviour at higher energies agrees quite well with the theoretical calculations.


Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


1996 ◽  
Vol 88 (1) ◽  
pp. 281-290 ◽  
Author(s):  
HAO WEN ◽  
TIANJING HE ◽  
CUNYI XU ◽  
JIAN ZUO ◽  
FAN-CHEN LIU

Sign in / Sign up

Export Citation Format

Share Document