Portable precision dc voltage–current transfer standard for electrometer calibration

1982 ◽  
Vol 53 (8) ◽  
pp. 1290-1291 ◽  
Author(s):  
G. Landis ◽  
M. Godwin
2015 ◽  
Vol 135 (12) ◽  
pp. 1463-1469
Author(s):  
Atsushi Nakata ◽  
Akihiro Torii ◽  
Jun Ishikawa ◽  
Suguru Mototani ◽  
Kae Doki ◽  
...  

2020 ◽  
Vol 38 (3A) ◽  
pp. 446-456
Author(s):  
Bashar F. Midhat

Step down DC-DC converters are power electronic circuits, which mainly used to convert voltage from a level to a lower level. In this paper, a discontinuous controller is proposed as a control method in order to control Step-Down DC-DC converters. A Lyapunov stability criterion is used to mathematically prove the ability of the proposed controller to give the desired voltage. Simulationsl1 are performedl1 in MATLABl1 software. The simulationl1 resultsl1 are presentedl1 for changesl1 in referencel1 voltagel1 and inputl1 voltagel1 as well as stepl1 loadl1 variations. The resultsl1 showl1 the goodl1 performancel1 of the proposedl1 discontinuousl1 controller.


2020 ◽  
Vol 13 ◽  
Author(s):  
Inbasekaran S. ◽  
G. Thiyagarajan ◽  
Ramesh C. Panda ◽  
S. Sankar

Background:: Chrome shavings, a bioactive material, are generated from tannery as waste material. These chrome shaving can be used for the preparation of many value-added products. Objective:: One such attempt is made to use these chrome shaving wastes as a composite bio-battery to produce DC voltage, an alternate green energy source and cleaner technology. Methods:: Chrome shavings are hydrolyzed to make collagen paste and mixed with the ferrous nanoparticles of Moringa oleifera leaves and Carbon nanoparticles of Onion peels to form electrolyte paste as base. Then, the electrolyte base was added to the aluminum paste and conducting gel, and mixed well to form composite material for bio-battery. Results:: The composite material of bio-battery has been characterized using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). Series and parallel circuit testing were done using Copper and Zinc electrodes or Carbon and Zinc electrodes as the battery terminals in the electrolyte paste. The surface area of these electrodes needs standardization from bench to pilot scale. The power generated, for an AA battery size, using a single bio-battery cell has produced a DC voltage of 1.5 V; current of 900 mA. Circuit testing on 1 ml of 80 well-cells connected in series has produced DC output of 18 V and 1100 mA whereas 48 V and 1500 mA were obtained from a series-parallel connection. Conclusion:: The glass transition temperature (Tg) of electrolyte of the bio-battery at 53°C indicates that, at this temperature, all the substances present in the bio-battery are well spread and contributing consistently to the electrolyte activity where Fe-C-Nano-Particles were able to form strong chemical bonds on the flanking hydroxyl group sites of the Collagen leading to reduced mobility of polymers and increase Tg. The results instigate promising trends for commercial exploitation of this composite for bio-battery production.


Author(s):  
Abiodun Ogunseye ◽  
Daniel Ogheneovo Johnson

A power inverter circuits is normally designed to meet its design specifications when the applied input DC voltage is within specified tolerance limits. Thus, single input inverters are usually specified to work from a DC source having a fixed nominal voltage. This limits the usefulness of the inverter circuit when a DC source having the specified nominal voltage is not available. In this work, a modified square wave inverter system that is specified to work properly from batteries with nominal voltages of 6, 12, 18 and 24 V was designed.  A model of the microcontroller-based circuit was developed with Proteus® software and its firmware was written in C language using the MicroC® development tool. A prototype of the circuit was constructed and then tested.  The constructed circuit was found to work properly by producing a 50 Hz modified square waveform when it was powered from batteries having nominal voltages of 6 V, 12 V, 18 V and 24 V.


Sign in / Sign up

Export Citation Format

Share Document