Giant magnetoresistance in ion beam deposited spin-valve films with specular enhancement

2001 ◽  
Vol 89 (11) ◽  
pp. 6931-6933 ◽  
Author(s):  
S. Sant ◽  
M. Mao ◽  
J. Kools ◽  
K. Koi ◽  
H. Iwasaki ◽  
...  
1999 ◽  
Vol 85 (8) ◽  
pp. 4454-4456 ◽  
Author(s):  
M. Mao ◽  
M. Miller ◽  
P. Johnson ◽  
H.-C. Tong ◽  
C. Qian ◽  
...  

2014 ◽  
Vol 28 (10) ◽  
pp. 1450081 ◽  
Author(s):  
Cong Yin ◽  
Dan Xie ◽  
Jian-Long Xu ◽  
Tian-Ling Ren

Spin valve giant magnetoresistance (GMR) sensors were prepared by a two-step thinning method combining grind thinning and inductively coupled plasma (ICP) etching together. The fabrication processes of front GMR sensors and backside ICP etching were described in detail. Magnetoresistance ratio of about 4.24% and coercive field of approximately 11 Oe were obtained in a tested bendable GMR sensor. The variations of the magnetic property in GMR sensors were explained mainly from the temperature, ion beam damage and mechanical damage generated by the fabrication process.


2000 ◽  
Vol 87 (9) ◽  
pp. 5377-5382 ◽  
Author(s):  
Satoru Araki ◽  
Masashi Sano ◽  
Shuxiang Li ◽  
Yoshihiro Tsuchiya ◽  
Olivier Redon ◽  
...  

2005 ◽  
Vol 97 (10) ◽  
pp. 10C507 ◽  
Author(s):  
Ken-ichi Aoshima ◽  
Nobuhiko Funabashi ◽  
Kenji Machida ◽  
Yasuyoshi Miyamoto ◽  
Kiyoshi Kuga

2000 ◽  
Vol 614 ◽  
Author(s):  
D.B. Fenner ◽  
J. Hautala ◽  
L.P. Allen ◽  
J.A. Greer ◽  
W.J. Skinner ◽  
...  

ABSTRACTThin-film magnetic sensor and memory devices in future generations may benefit from a processing tool for final-step etching and smoothing of surfaces to nearly an atomic scale. Gas-cluster ion-beam (GCIB) systems make possible improved surface sputtering and processing for many types of materials. We propose application of GCIB processing as a key smoothing step in thin-film magnetic-materials technology, especially spin-valve GMR. Results of argon GCIB etching and smoothing of surfaces of alumina, silicon, permalloy and tantalum films are reported. No accumulating roughness or damage is observed. The distinct scratches and tracks seen in atomic-force microscopy of CMP-processed surfaces, are removed almost entirely by subsequent GCIB processing. The technique primarily reduces high spatial-frequency roughness and renders the topographic surface elevations more nearly gaussian (randomly distributed).


2012 ◽  
Vol 111 (7) ◽  
pp. 07E504 ◽  
Author(s):  
Seungha Yoon ◽  
Youngman Jang ◽  
Chunghee Nam ◽  
Seungkyo Lee ◽  
Joonhyun Kwon ◽  
...  

1995 ◽  
Vol 384 ◽  
Author(s):  
J. B. Restorff ◽  
M. Wun-Fogle ◽  
S. F. Cheng ◽  
K. B. Hathaway

ABSTRACTWe have observed time dependent magnetic switching in spin-valve sandwich structures of Cu/Co/Cu/Fe films grown on silicon and Kapton substrates and Permalloy/Co/Cu/Co films grown on NiO or NiO/CoO coated Si substrates. The giant magnetoresistance (MR) values ranged from 1 to 3 percent at room temperature. The films were grown by DC magnetron sputter deposition. Measurements were made on the time required for the MR to stabilize to about 1 part in 104 after the applied field was incremented. This time depends almost linearly on the amplitude of the timedependent MR change with a slope (time / ΔMR) of 20 000 to 30 000 s. Some samples took as long as 70 s to stabilize. The time dependent effects may be important for devices operating in these regions of the magnetoresistance curve. In addition, measurements were made on the time history of the MR value for a period of 75 s following a step change in the field from saturation. We observed that the time dependent behavior of the MR values of both experiments produced an excellent fit to a function of the form ΔMR(t) = α + β;ln(t) where ɑ and β are constants. This time dependence was consistent with the behavior of the magnetic aftereffect.


2002 ◽  
Vol 81 (15) ◽  
pp. 2809-2811 ◽  
Author(s):  
F. J. Castaño ◽  
S. Haratani ◽  
Y. Hao ◽  
C. A. Ross ◽  
Henry I. Smith

Sign in / Sign up

Export Citation Format

Share Document