magnetron sputter deposition
Recently Published Documents


TOTAL DOCUMENTS

314
(FIVE YEARS 34)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Vol 13 ◽  
pp. 10-53
Author(s):  
Anastasiya Sergievskaya ◽  
Adrien Chauvin ◽  
Stephanos Konstantinidis

Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical colloidal synthesis, the review contains chapters explaining the basics of (magnetron) sputter deposition and the formation of NPs in solution. This review article covers more than 132 papers published on this topic from 1996 to September 2021 and aims at providing a critical analysis of most of the reported data; we will address the influence of the sputtering parameters (sputter power, current, voltage, sputter time, working gas pressure, and the type of sputtering plasma) and host liquid properties (composition, temperature, viscosity, and surface tension) on the NP formation as well as a detailed overview of the properties and applications of the produced NPs.


2021 ◽  
Author(s):  
Anwar Ul-Hamid

Abstract Nitrides, carbides, and carbonitrides of transition metal elements like Zr, W, Ti, etc. are generally employed to produce hard coatings. Zirconium-based hard coatings have shown useful applications in the areas of tribology, biomedicine and electrical due to their high thermal stability, hardness, biocompatibility, good erosion, wear, and corrosion resistance. In this study, we created homogeneous and tenacious nanostructured hard coatings based on Zr with good mechanical properties. The magnetron sputter deposition technique was utilized to coat stainless steel 316L substrates with multilayers of Zr/ZrN and ZrN/ZrCN with individual layer thicknesses of 250 and 500 nm for each coating composition. The deposition conditions were adjusted to create two different coating thicknesses of 2 and 3 µm. The thickness of the coating was confirmed using Calotest and the coatings’ morphology and elemental composition were determined utilizing the atomic force microscope and scanning electron microscope equipped with energy dispersive x-ray spectrometer. Coating thickness and adhesion were measured using cross-sectional samples and XRD was utilized to analyze the coatings structure. Nanoindenter was employed to determine the instrumental nanoindentation hardness and elastic modulus. The influence of coating thickness on tribological behavior was further investigated using the ratio of nanohardness-to-elastic modulus (H/E). No evidence of decohesion was observed at the substrate/coatings interface, and the grains of all the coatings were observed to show columnar growth which were homogeneous, compact and dense. The grains of the ZrN/ZrCN coatings were observed to be denser, finer and more compact compared to those of the Zr/ZrN coatings. Correspondingly, higher hardness, modulus and H/E values were exhibited by ZrN/ZrCN than Zr/ZrN coatings. This suggests that the ZrN/ZrCN coatings are capable of exhibiting better wear resistance and fracture toughness. The coatings developed in this investigation are anticipated to be suitable for applications in tribology due to their excellent hardness and H/E properties.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7224
Author(s):  
Altangerel Dulmaa ◽  
Diederik Depla

CuO and Al thin films were successively deposited using direct current (reactive) magnetron sputter deposition. A multilayer of five bilayers was deposited on glass, which can be ignited by heating a Ti resistive thin film. The velocity of the reaction front which propagates along the multilayer was optically determined using a high-speed camera. During the deposition of the aluminum layers, air was intentionally leaked into the vacuum chamber to introduce impurities in the film. Depositions at different impurity/metal flux ratios were performed. The front velocity reaches a value of approximately 20 m/s at low flux ratios but drops to approximately 7 m/s at flux ratios between 0.6 and 1. The drop is rather abrupt as the front velocity stays constant above flux ratios larger than 1. This behavior is explained based on the hindrance of the oxygen transport from the oxidizer (CuO) to the fuel (Al).


2021 ◽  
Vol 3 ◽  
Author(s):  
Anastasiya Sergievskaya ◽  
Amy O’Reilly ◽  
Halima Alem ◽  
Julien De Winter ◽  
David Cornil ◽  
...  

Magnetron sputter deposition of metal targets over liquids allows producing colloidal solutions of small metal nanoparticles (NPs) without any additional reducing or stabilizing reagents. Despite that this synthetic approach is known for almost 15 years, the detailed mechanism of NP formation is still unclear. Detailed investigations must be carried out to better understand the growth mechanism and, ultimately, control the properties of the NPs. Here, the combination of the gold (Au) target and castor oil, a highly available green solvent, was chosen as a model system to investigate how different experimental parameters affect the growth of NPs. The effect of deposition time, applied sputter power, working gas pressure, and type of sputter plasma (direct current magnetron sputtering (DC-MS) vs. high-power impulse magnetron sputtering (HiPIMS)) on properties of Au NPs has been studied by UV-vis spectroscopy and transmission electron microscopy (TEM), and further supported by quantum-chemistry calculations and mass-spectrometry analysis. The mechanism of the Au NP formation includes the production of primary NPs and their subsequent aggregative growth limited by diffusion in the viscous castor oil medium. Final Au NPs have a narrow size distribution and a medium diameter of 2.4–3.2 nm when produced in DC-MS mode. The NP size can be increased up to 5.2 ± 0.8 nm by depositing in HiPIMS mode which, therefore, mimics energy and time-consuming post synthesis annealing.


2021 ◽  
Vol 418 ◽  
pp. 127226
Author(s):  
Ignacio Lopez-Cabanas ◽  
Javier LLorca ◽  
Raquel González-Arrabal ◽  
Efstathios I. Meletis ◽  
Jon M. Molina-Aldareguia

2021 ◽  
pp. 150661
Author(s):  
N. Pliatsikas ◽  
O. Karabinaki ◽  
M. Zarshenas ◽  
G.A. Almyras ◽  
I. Shtepliuk ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 661
Author(s):  
Steven P. Bennett ◽  
Samuel W. LaGasse ◽  
Marc Currie ◽  
Olaf Van’t Erve ◽  
Joseph C. Prestigiacomo ◽  
...  

Metamagnetic FeRh has been the focus of numerous studies for its highly unique antiferromagnetic (AF) to ferromagnetic (FM) metamagnetic transition. While this phase transition usually occurs above room temperature (often Tc > 400 K), both ion irradiation and strained epitaxial growth have been used to bring it to applicable temperatures. Nevertheless, cross sample variability is pervasive in these studies. Here we explore the optical and magnetic properties of 35 nm thick FeRh grown by magnetron sputter deposition simultaneously on two different single crystal substrates: epitaxially on MgO (001) and highly strained with large lattice mismatch on Al2O3 (1000). We then irradiate the epitaxial film with 5 keV N+ ions to introduce disorder (and to a lesser extent, modify chemical composition) without effecting the surface morphology. We find that the phase-transitional properties of both films are strikingly different due to the large lattice mismatch, despite being grown in tandem with nominally identical growth conditions including Fe/Rh stoichiometry, pressure, and temperature. We observe that N+ implantation lowers Tc by ~60 K, yielding a sample with nominally the same transition temperature as the non-epitaxial film on sapphire, yet with a significantly increased magnetic moment, a larger magnetization change and a more abrupt transition profile. We attribute these differences to the Volmer-Weber type growth mode induced by the sapphire substrate and the resulting rougher surface morphology.


2021 ◽  
pp. 138720
Author(s):  
Forest C. Thompson ◽  
Frank M. Kustas ◽  
Kent E. Coulter ◽  
Grant A. Crawford

Sign in / Sign up

Export Citation Format

Share Document