icp etching
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 34)

H-INDEX

12
(FIVE YEARS 2)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1535
Author(s):  
Sergey Ishutkin ◽  
Vadim Arykov ◽  
Igor Yunusov ◽  
Mikhail Stepanenko ◽  
Vyacheslav Smirnov ◽  
...  

Chlorine processes are widely used for the formation of waveguide structures in InP-based optoelectronics. Traditionally, ICP etching of InP in a Cl2-based plasma requires substrate temperatures in the range of 150–200 °C. This condition is mandatory, since during the etching process low-volatility InClx components are formed and at insufficient temperatures are deposited onto substrate, leading to the formation of defects and further impossibility of the formation of waveguide structures. The need to preheat the substrate limits the application of chlorine processes. This paper presents a method of ICP etching an InP/InGaAsP heterostructure in a Cl2/Ar/N2 gas mixture. A feature of the developed method is the cyclic etching of the heterostructure without preliminary heating. The etching process starts at room temperature. In the optimal etching mode, the angle of inclination of the sidewalls of the waveguides reached 88.8° at an etching depth of more than 4.5 μm. At the same time, the surface roughness did not exceed 30 nm. The selectivity of the etching process with respect to the SiNx mask was equal to 9. Using the developed etching method, test integrated waveguide elements were fabricated. The fabricated active integrated waveguide (p-InP epitaxial layers were not removed) with a width of 2 μm demonstrated an optical loss around 11 ± 1.5 dB/cm at 1550 nm. The insertion loss of the developed Y- and MMI-splitters did not exceed 0.8 dB.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3327
Author(s):  
Shan Ding ◽  
Liying Zhang ◽  
Yuewen Li ◽  
Xiangqian Xiu ◽  
Zili Xie ◽  
...  

In this paper, based on the different etching characteristics between GaN and Ga2O3, large-scale and vertically aligned β-Ga2O3 nanotube (NT) and microtube (MT) arrays were fabricated on the GaN template by a facile and feasible selective etching method. GaN micro-/nanowire arrays were prepared first by inductively coupled plasma (ICP) etching using self-organized or patterning nickel masks as the etching masks, and then the Ga2O3 shell layer converted from GaN was formed by thermal oxidation, resulting in GaN@Ga2O3 micro-/nanowire arrays. After the GaN core of GaN@Ga2O3 micro-/nanowire arrays was removed by ICP etching, hollow Ga2O3 tubes were obtained successfully. The micro-/nanotubes have uniform morphology and controllable size, and the wall thickness can also be controlled with the thermal oxidation conditions. These vertical β-Ga2O3 micro-/nanotube arrays could be used as new materials for novel optoelectronic devices.


Author(s):  
Changwei Zheng ◽  
Zhicheng Wang ◽  
Shasha Jiao ◽  
Qijun Liu ◽  
Yehui Luo ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2034
Author(s):  
Shaobo Ge ◽  
Weiguo Liu ◽  
Jin Zhang ◽  
Yuetian Huang ◽  
Yingxue Xi ◽  
...  

In this paper, synthetically using refraction, diffraction, and interference effects to achieve free manipulation of the focused optical field, we firstly present a photonic nanojet (PNJ) generated by a micropyramid, which is combined with multilayer thin films. The theory of total internal reflection (TIR) was creatively used to design the base angle of the micropyramid, and the size parameters and material properties of the microstructure were deduced via the expected optical field distribution. The as-designed bilayer micropyramid array was fabricated by using the single-point diamond turning (SPDT) technique, nanoimprint lithography (NIL), and proportional inductively coupled plasma (ICP) etching. After the investigation, the results of optical field measurement were highly consistent with those of the numerical simulation, and they were both within the theoretical calculation range. The bilayer micropyramid array PNJ enhanced the interference effect of incident and scattered fields; thus, the intensity of the focused light field reached 33.8-times that of the initial light, and the range of the focused light field was extended to 10.08λ. Moreover, the full width at half maximum (FWHM) of the focal spot achieved was 0.6λ, which was close to the diffraction limit.


Author(s):  
Xiaoyi Wang ◽  
Wenkui Lin ◽  
Xiaofan Yun ◽  
Qiang Zha ◽  
Haiou Li ◽  
...  
Keyword(s):  

Author(s):  
Jae Ha Ryu ◽  
Jeremy D. Kirch ◽  
Benjamin Knipfer ◽  
Zerui Liu ◽  
Morgan Turville-Heitz ◽  
...  

Author(s):  
Shiying Zhang ◽  
Lei Zhang ◽  
Yueyao Zhong ◽  
Guodong Wang ◽  
Qingjun Xu

High crystal quality GaN nanorod arrays were fabricated by inductively coupled plasma (ICP) etching using self-organized nickel (Ni) nano-islands mask on GaN film and subsequent repaired process including annealing in ammonia and KOH etching. The Ni nano-islands have been formed by rapid thermal annealing, whose density, shape, and dimensions were regulated by annealing temperature and Ni layer thickness. The structural and optical properties of the nanorods obtained from GaN epitaxial layers were comparatively studied by high-resolution X-ray diffraction (HRXRD), Raman spectroscopy and photoluminescence (PL). The results indicate that damage induced by plasma can be successfully healed by annealing in NH3 at 900 °C. The average diameter of the as-etched nanorod was effectively reduced and the plasma etch damage was removed after a wet treatment process in a KOH solution. It was found that the diameter of the GaN nanorod was continuously reduced and the PL intensity first increased, then reduced and finally increased as the KOH etching time sequentially increased.


2021 ◽  
Author(s):  
Guanyu Chen ◽  
Eric Jun Hao Cheung ◽  
Yu Cao ◽  
Jisheng Pan ◽  
Aaron J. Danner

Abstract We analyzed the dry etching of perovskite oxides using argon-based inductively coupled plasmas (ICP) for photonics applications. Various chamber conditions and their effects on etching rates have been demonstrated based on Z-cut lithium niobate (LN). The measured results are predictable and repeatable and can be applied to other perovskite oxides, such as X-cut LN and barium titanium oxide (BTO). The surface roughness is better for both etched LN and BTO compared with their as-deposited counterparts as confirmed by atomic force microscopy (AFM). Both the energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) methods have been used for surface chemical component comparisons, qualitative and quantitative, and no obvious surface state changes are observed according to the measured results. An optical waveguide fabricated with the optimized argon-based ICP etching was measured to have − 3.7 dB/cm loss near 1550 nm wavelength for Z-cut LN, which validates this kind of method for perovskite oxides etching in photonics applications.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Guanyu Chen ◽  
Eric Jun Hao Cheung ◽  
Yu Cao ◽  
Jisheng Pan ◽  
Aaron J. Danner

AbstractWe analyzed the dry etching of perovskite oxides using argon-based inductively coupled plasmas (ICP) for photonics applications. Various chamber conditions and their effects on etching rates have been demonstrated based on Z-cut lithium niobate (LN). The measured results are predictable and repeatable and can be applied to other perovskite oxides, such as X-cut LN and barium titanium oxide (BTO). The surface roughness is better for both etched LN and BTO compared with their as-deposited counterparts as confirmed by atomic force microscopy (AFM). Both the energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) methods have been used for surface chemical component comparisons, qualitative and quantitative, and no obvious surface state changes are observed according to the measured results. An optical waveguide fabricated with the optimized argon-based ICP etching was measured to have -3.7 dB/cm loss near 1550 nm wavelength for Z-cut LN, which validates this kind of method for perovskite oxides etching in photonics applications.


Sign in / Sign up

Export Citation Format

Share Document