Memory Effect and Role of Defects in Carbon Nanotube Field Effect Transistors

2002 ◽  
Author(s):  
A. T. Johnson
Nano Letters ◽  
2005 ◽  
Vol 5 (7) ◽  
pp. 1497-1502 ◽  
Author(s):  
Zhihong Chen ◽  
Joerg Appenzeller ◽  
Joachim Knoch ◽  
Yu-ming Lin ◽  
Phaedon Avouris

2006 ◽  
Vol 963 ◽  
Author(s):  
Damien Casterman ◽  
Merlyne Maria De Souza

ABSTRACTThe role of the p-type chemical dopant, SbCl6, on Palladium (Pd)-contacted carbon nanotube field effect transistors (CNTFETs) is investigated using ab initio calculations. The interaction of SbCl6 with Pd leads to the chemisorption of one chlorine atom (Cl) which separates off from the rest of the molecule leaving behind a rehybridized SbCl5 molecule. This interaction increases the local workfunction by 0.08 eV. The interaction of the molecule with the carbon nanotube (CNT) itself results in the physisorption of SbCl6 onto CNT. The SbCl6 is found to degenerately dope CNT p-type and shifts the local potential by 0.29 eV. These barriers are useful for modelling of transport of Schottky barrier CNTFETs.


Biosensors ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Agnes Purwidyantri ◽  
Telma Domingues ◽  
Jérôme Borme ◽  
Joana Rafaela Guerreiro ◽  
Andrey Ipatov ◽  
...  

Liquid-gated Graphene Field-Effect Transistors (GFET) are ultrasensitive bio-detection platforms carrying out the graphene’s exceptional intrinsic functionalities. Buffer and dilution factor are prevalent strategies towards the optimum performance of the GFETs. However, beyond the Debye length (λD), the role of the graphene-electrolytes’ ionic species interactions on the DNA behavior at the nanoscale interface is complicated. We studied the characteristics of the GFETs under different ionic strength, pH, and electrolyte type, e.g., phosphate buffer (PB), and phosphate buffer saline (PBS), in an automatic portable built-in system. The electrostatic gating and charge transfer phenomena were inferred from the field-effect measurements of the Dirac point position in single-layer graphene (SLG) transistors transfer curves. Results denote that λD is not the main factor governing the effective nanoscale screening environment. We observed that the longer λD was not the determining characteristic for sensitivity increment and limit of detection (LoD) as demonstrated by different types and ionic strengths of measuring buffers. In the DNA hybridization study, our findings show the role of the additional salts present in PBS, as compared to PB, in increasing graphene electron mobility, electrostatic shielding, intermolecular forces and DNA adsorption kinetics leading to an improved sensitivity.


2021 ◽  
pp. 2100393
Author(s):  
Hamna F. Iqbal ◽  
Matthew Waldrip ◽  
Hu Chen ◽  
Iain McCulloch ◽  
Oana D. Jurchescu

Sign in / Sign up

Export Citation Format

Share Document