A Mechanical Determination of Biaxial Residual Stress in Sheet Materials

1951 ◽  
Vol 22 (2) ◽  
pp. 130-134 ◽  
Author(s):  
R. G. Treuting ◽  
W. T. Read
1974 ◽  
Vol 41 (3) ◽  
pp. 647-651 ◽  
Author(s):  
Myron Levitsky ◽  
Bernard W. Shaffer

A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.


2021 ◽  
Vol 27 (3) ◽  
pp. 215-218
Author(s):  
Cemil Sert ◽  
◽  
Abdurrahim Dusak ◽  
Mehmet Akif Altay ◽  
◽  
...  

Author(s):  
Ruthard Bonn ◽  
Klaus Metzner ◽  
H. Kockelmann ◽  
E. Roos ◽  
L. Stumpfrock

The main target of a research programme “experimental and numerical analyses on the residual stress field in the area of circumferential welds in austenitic pipe welds”, sponsored by Technische Vereinigung der Großkraftwerksbetreiber e. V. (VGB) and carried out at MPA Stuttgart, was the validation of the numerical calculation for the quantitative determination of residual stress fields in austenitic circumferential pipe welds. In addition, the influence of operational stresses as well as the impact of the pressure test on the residual stress state had to be examined. By using the TIG orbital welding technique, circumferential welds (Material X 10 CrNiNb 18 9 (1.4550, corresponding to TP 347) were produced (geometric dimensions 255.4 mm I.D. × 8.8 mm wall) with welding boundary conditions and weld parameters (number of weld layers and weld built-up, seam volume, heat input) which are representative for pipings in power plants. Deformation and temperature measurements accompanying the welding, as well as the experimentally determined (X-ray diffraction) welding residual stress distribution, served as the basis for the verification of numeric temperature and residual stress field calculations. The material model on which the calculations were founded was developed by experimental weld simulations in the thermo-mechanical test rig GLEEBLE 2000 for the determination of the material behaviour at different temperatures and elasto-plastic deformation. The numeric calculations were carried out with the Finite Element program ABAQUS. The comparison of the calculation results with the experimental findings confirms the proven validation of the developed numerical calculation models for the quantitative determination of residual stresses in austenitic circumferential pipings. The investigation gives a well-founded insight into the complex thermo-mechanical processes during welding, not known to this extent from literature previously.


Sign in / Sign up

Export Citation Format

Share Document