Normal Stress Effects in Second‐Order Fluids

1964 ◽  
Vol 35 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Bernard D. Coleman ◽  
Hershel Markovitz
1969 ◽  
Vol 36 (3) ◽  
pp. 634-635 ◽  
Author(s):  
R. I. Tanner

The calculation of increased bearing capacity due to large viscoelastic or normal stress effects is carried out exactly for plane slider bearings with a second-order fluid lubricant.


1987 ◽  
Vol 33 (115) ◽  
pp. 268-273 ◽  
Author(s):  
Chi-Sing Man ◽  
Quan-Xin Sun

AbstractMcTigue and others (1985) identified a possible problem in the type of constitutive equation usually used for modeling the creep behaviour of polycrystalline ice. They pointed out that Glen’s flow law necessarily excludes the consideration of normal stress effects, which are of great significance in other disciplines that consider non-Newtonian fluids. Using the second-order fluid (with material parameters evaluated from laboratory data) as a tentative model for ice, they reached the conclusion that normal stress effects may be discernible in natural glacier flow. But, as noted by McTigue and others, the second-order fluid “fails to represent the non-linear rate dependence of ice in shear”; therefore it is in fact not a suitable constitutive model for glacier ice in shearing flow. In this note, parallel to what McTigue and others did for the second-order fluid, we present a similar analysis for (I) the modified second-order fluid and (II) the power-law fluid of grade 2, both of which are constitutive models recently proposed by Man as a tentative generalization of Glen’s flow law. Both models (I) and (II) can represent normal stress effects, and both agree with Glen’s flow law in the prediction of the depth profile of velocity in the steady laminar flow of glaciers. For ease of comparison, the same creep data of McTigue and others are used in quantifying the material parameters in these two models. Both models (I) and (II) predict far less pronounced normal stress effects in glaciers than those estimated by McTigue and others (whose data analysis in fact suffered from inconsistencies and over-parameterization).


2012 ◽  
Vol 693 ◽  
pp. 500-507 ◽  
Author(s):  
J. M. Rallison

AbstractWe use an ensemble averaging technique to calculate the average stress for a dilute suspension of liquid drops that are instantaneously spherical. The solvent and the drops consist of second-order fluids with differing properties. The suspension is itself a second-order fluid and its viscosity and normal stress coefficients are determined. For the special case of a rigid sphere suspension the results agree with Koch & Subramanian (J. Non-Newtonian Fluid Mech., vol. 138, 2006, p. 87, and vol. 153, 2008, p. 202). Differences from other results in the literature are discussed.


1987 ◽  
Vol 33 (115) ◽  
pp. 268-273 ◽  
Author(s):  
Chi-Sing Man ◽  
Quan-Xin Sun

AbstractMcTigue and others (1985) identified a possible problem in the type of constitutive equation usually used for modeling the creep behaviour of polycrystalline ice. They pointed out that Glen’s flow law necessarily excludes the consideration of normal stress effects, which are of great significance in other disciplines that consider non-Newtonian fluids. Using the second-order fluid (with material parameters evaluated from laboratory data) as a tentative model for ice, they reached the conclusion that normal stress effects may be discernible in natural glacier flow. But, as noted by McTigue and others, the second-order fluid “fails to represent the non-linear rate dependence of ice in shear”; therefore it is in fact not a suitable constitutive model for glacier ice in shearing flow. In this note, parallel to what McTigue and others did for the second-order fluid, we present a similar analysis for (I) the modified second-order fluid and (II) the power-law fluid of grade 2, both of which are constitutive models recently proposed by Man as a tentative generalization of Glen’s flow law. Both models (I) and (II) can represent normal stress effects, and both agree with Glen’s flow law in the prediction of the depth profile of velocity in the steady laminar flow of glaciers. For ease of comparison, the same creep data of McTigue and others are used in quantifying the material parameters in these two models. Both models (I) and (II) predict far less pronounced normal stress effects in glaciers than those estimated by McTigue and others (whose data analysis in fact suffered from inconsistencies and over-parameterization).


2020 ◽  
Vol 32 (12) ◽  
pp. 123103
Author(s):  
Pradipta Kr. Das ◽  
Arthur David Snider ◽  
Venkat R. Bhethanabotla

Author(s):  
Samir Hassan Sadek ◽  
Mehmet Yildiz

This work presents the development of both weakly compressible and incompressible Smoothed Particle Hydrodynamics (SPH) models for simulating two-dimensional transient viscoelastic free surface flow which has extensive applications in polymer processing industries. As an illustration with industrial significance, we have chosen to model the extrudate swell of a second-order polymeric fluid. The extrudate or die swell is a phenomenon that takes place during the extrusion of polymeric fluids. When a polymeric fluid is forced through a die to give a polymer its desired shape, due to its viscoelastic non-Newtonian nature, it shows a tendency to swell or contract at the die exit depending on its rheological parameters. The die swell phenomenon is a typical example of a free surface problem where the free surface is formed at the die exit after the polymeric fluid has been extruded. The swelling process leads to an undesired increase in the dimensions of the extrudate. To be able to obtain a near-net shape product, the flow in the extrusion process should be well-understood to shed some light on the important process parameters behind the swelling phenomenon. To this end, a systematic study has been carried out to compare constitutive models proposed in literature for second-order fluids in terms of their ability to capture the physics behind the swelling phenomenon. The effect of various process and rheological parameters on the die swell such as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have also been investigated. The models developed here can predict both swelling and contraction of the extrudate successfully. The die swell problem was solved for a wide range of Deborah numbers and for two different Re numbers. The numerical model was validated through the solution of fully developed Newtonian and Non-Newtonian viscoelastic flows in a two-dimensional channel, and the results of these two benchmark problems were compared with analytic solutions, and good agreements were obtained.


2018 ◽  
Vol 30 (1) ◽  
pp. 013103
Author(s):  
Byung Chan Eu

Wear ◽  
1987 ◽  
Vol 116 (2) ◽  
pp. 237-248 ◽  
Author(s):  
N.M. Bujurke ◽  
M. Jagadeeswar ◽  
P.S. Hiremath

Sign in / Sign up

Export Citation Format

Share Document