Note on the Back Reaction Term in Ferromagnetic Relaxation Equations

1961 ◽  
Vol 32 (4) ◽  
pp. 738-738 ◽  
Author(s):  
Herbert Callen
2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


2019 ◽  
Vol 168 (8) ◽  
pp. 1487-1537 ◽  
Author(s):  
Marie-Françoise Bidaut-Véron ◽  
Marta García-Huidobro ◽  
Laurent Véron

1993 ◽  
Vol 47 (4) ◽  
pp. 1465-1470 ◽  
Author(s):  
David Hochberg ◽  
Thomas W. Kephart
Keyword(s):  

2013 ◽  
Vol 81 (7) ◽  
pp. 492-497 ◽  
Author(s):  
William M. Nelson

2013 ◽  
Vol 13 (3) ◽  
Author(s):  
Sophia Th. Kyritsi ◽  
Donal O’ Regan ◽  
Nikolaos S. Papageorgiou

AbstractWe consider nonlinear periodic problems driven by the scalar p-Laplacian with a Carathéodory reaction term. Under conditions which permit resonance at infinity with respect to any eigenvalue, we show that the problem has a nontrivial smooth solution. Our approach combines variational techniques based on critical point theory with Morse theory.


2012 ◽  
Vol 27 (25) ◽  
pp. 1250150 ◽  
Author(s):  
F. R. KLINKHAMER

A simplified (but consistent) description of particle-production back-reaction effects in de Sitter spacetime is given.


Sign in / Sign up

Export Citation Format

Share Document