scholarly journals Charge-on-spring polarizable water models revisited: From water clusters to liquid water to ice

2004 ◽  
Vol 121 (19) ◽  
pp. 9549-9564 ◽  
Author(s):  
Haibo Yu ◽  
Wilfred F. van Gunsteren
2019 ◽  
Author(s):  
Asmus Ougaard Dohn ◽  
Elvar Jónsson ◽  
Hannes Jonsson

The manuscript analyzes the accuracy of our recently developed reciprocal polarizable embedding scheme, where a density functional theory model of the QM region is coupled to a dipole- and quadrupole polarizable water potential of the MM region. We present calculations of water clusters and liquid water where we analyze the energy, atomic forces and total polarization to demonstrate that artifacts in energy and polarization introduced by the QM/MM coupling are small and well-behaved. Furthermore, our methodology improves the consistency of the structure of optimized water hexamer geometries when compared to results obtained with models that neglect polarization. Additionally, the manuscript provides evidence that our coupling scheme eliminates artifacts in the structure of liquid water obtained with simpler electrostatic embedding models.


ChemInform ◽  
2015 ◽  
Vol 46 (17) ◽  
pp. no-no
Author(s):  
R. Benny Gerber ◽  
Mychel E. Varner ◽  
Audrey D. Hammerich ◽  
Sampsa Riikonen ◽  
Garold Murdachaew ◽  
...  

Author(s):  
Joel E. Boyd ◽  
Ari Briskman ◽  
Alan Mikhail ◽  
Vicki Colvin ◽  
Daniel Mittleman

2020 ◽  
Vol 117 (27) ◽  
pp. 15423-15428 ◽  
Author(s):  
Bingbing Zhang ◽  
Yong Yu ◽  
Yang-Yang Zhang ◽  
Shukang Jiang ◽  
Qinming Li ◽  
...  

Infrared spectroscopic study of neutral water clusters is crucial to understanding of the hydrogen-bonding networks in liquid water and ice. Here we report infrared spectra of size-selected neutral water clusters, (H2O)n(n= 3−6), in the OH stretching vibration region, based on threshold photoionization using a tunable vacuum ultraviolet free-electron laser. Distinct OH stretch vibrational fundamentals observed in the 3,500−3,600-cm−1region of (H2O)5provide unique spectral signatures for the formation of a noncyclic pentamer, which coexists with the global-minimum cyclic structure previously identified in the gas phase. The main features of infrared spectra of the pentamer and hexamer, (H2O)n(n= 5 and 6), span the entire OH stretching band of liquid water, suggesting that they start to exhibit the richness and diversity of hydrogen-bonding networks in bulk water.


2019 ◽  
Author(s):  
Asmus Ougaard Dohn ◽  
Elvar Jónsson ◽  
Hannes Jonsson

The manuscript analyzes the accuracy of our recently developed reciprocal polarizable embedding scheme, where a density functional theory model of the QM region is coupled to a dipole- and quadrupole polarizable water potential of the MM region. We present calculations of water clusters and liquid water where we analyze the energy, atomic forces and total polarization to demonstrate that artifacts in energy and polarization introduced by the QM/MM coupling are small and well-behaved. Furthermore, our methodology improves the consistency of the structure of optimized water hexamer geometries when compared to results obtained with models that neglect polarization. Additionally, the manuscript provides evidence that our coupling scheme eliminates artifacts in the structure of liquid water obtained with simpler electrostatic embedding models.


Author(s):  
Yijin Mao ◽  
Yuwen Zhang

The temperature-dependent thermal conductivity and shear viscosity of liquid water between 283 and 363 K are evaluated for eight rigid models with reverse nonequilibrium molecular dynamics (RNEMD). In comparison with experimental data, five-site models (TIP5P and TIP5P-Ew) have apparent advantages in estimating thermal conductivities than other rigid water models that overestimate the value by tens of percent. For shear viscosity, no single model can reproduce all experimental data; instead, five- and four-site models show their own strength in a certain temperature range. Meanwhile, all of the current rigid models obtain lower values than experimental data when temperature is lower than 298 K, while the TIP5P and TIP5P-Ew models can relatively accurately predict the values over others at a temperature range from 298 to 318 K. At a higher temperature range shear viscosity of liquid water can be reproduced with a four-site model (TIP4P-2005, TIP4P-Ew) fairly well.


Sign in / Sign up

Export Citation Format

Share Document