scholarly journals Lattice preamorphization by ion irradiation: Fluence dependence of the electronic stopping power threshold for amorphization

2005 ◽  
Vol 97 (9) ◽  
pp. 093514 ◽  
Author(s):  
F. Agulló-López ◽  
G. García ◽  
J. Olivares
2003 ◽  
Vol 797 ◽  
Author(s):  
Koichi Awazu ◽  
Makoto Fujimaki ◽  
Yoshimichi Ohki ◽  
Tetsuro Komatsubara

ABSTRACTWe have developed a nano-micro structure fabrication method in rutile TiO2 single crystal by use of swift heavy-ion irradiation. The area where ions heavier than Cl ion accelerated with MeV-order high energy were irradiated was well etched by hydrofluoric acid, by comparison etching was not observed in the pristine TiO2 single crystal. Noticed that the irradiated area could be etched to a depth at which the electronic stopping power of the ion decayed to a value of 6.2keV/nm. We also found that the value of the electronic stopping power was increased, eventually decreased against depth in TiO2 single crystal with, e.g. 84.5MeV Ca ion. Using such a beam, inside of TiO2 single crystal was selectively etched with 20% hydrofluoric acid, while the top surface of TiO2 single crystal subjected to irradiation was not etched. Roughness of the new surface created in the single crystal was within 7nm with the atomic forth microscopy measurement.


1993 ◽  
Vol 126 (1-4) ◽  
pp. 251-254 ◽  
Author(s):  
A. Meftah ◽  
M. Hage-Ali ◽  
J. P. Stoquert ◽  
F. Studer ◽  
M. Toulemonde

2020 ◽  
Vol 98 (2) ◽  
pp. 167-171 ◽  
Author(s):  
Abdullah Atef Shukri ◽  
Ahmad Al-Qawasmeh ◽  
M.M. Al Shorman ◽  
A. Alsaad

The electronic stopping power is a fundamental quantity to many technological fields that use ion irradiation. Here we investigate the validity of using a fully ab initio computational scheme based on linear response time-dependent density functional theory to predict the random electronic stopping power (RESP) of a proton in bulk aluminum. We verify the power of using the extrapolation scheme to overcome the expected convergence issue of the RESP calculations. We show that the calculated RESP of valence electrons compares well with experimental data for low proton velocity only when at full convergence and including the exchange-correlation effect. We demonstrate that the inclusion of valence states only is sufficient for calculating the electronic stopping power up to the stopping maximum.


Author(s):  
C A P da Costa ◽  
J A Souza-Corrêa ◽  
E F da Silveira

Abstract Knowledge on amino acid's dissociation rates by solar wind is relevant for the study of biomaterial resistance in space. The radiolysis and sputtering of glycine by 1 keV electron beam and by 1.8 MeV H+, 1.5 MeV He+ and 1.5 MeV N+ ion beams are studied in laboratory, at room temperature. The column density decrease rates due to each beam are measured via infrared spectroscopy and destruction cross sections are determined. Present results stand in good agreement with those found in the literature and show that over five orders of magnitude, apparent destruction cross sections (which includes sputtering), σdap, are approximately proportional to the electronic stopping power, Se, that is (σdap ≈ a Se), where 1/a ≈ 120 eV/nm3. This value corresponds to the mean absorbed energy density necessary to dissociate (and/or eject) glycine; it also suggests that the stopping power threshold for molecular destruction is 23 keV μm−1. Assuming σdap = a Se for electron and ion projectiles, the half-life of pure α-glycine is estimated for the solar wind processing at 1 AU: about 10 days for protons or electrons and 40 days for He ions.


Sign in / Sign up

Export Citation Format

Share Document