Enhanced carrier confinement in quantum dots by raising wetting layer state energy

2005 ◽  
Vol 87 (3) ◽  
pp. 033111 ◽  
Author(s):  
Sebastian Moehl ◽  
Laurent Maingault ◽  
Kuntheak Kheng ◽  
Henri Mariette
1997 ◽  
Vol 56 (24) ◽  
pp. 15740-15743 ◽  
Author(s):  
Augusto Gonzalez ◽  
Bart Partoens ◽  
François M. Peeters

Author(s):  
Manori V. Gunasekera ◽  
Dinghao Tang ◽  
Irene Rusakova ◽  
David J. Smith ◽  
Alexandre Freundlich

2013 ◽  
Vol 46 (31) ◽  
pp. 315101 ◽  
Author(s):  
L Seravalli ◽  
G Trevisi ◽  
P Frigeri ◽  
F Rossi ◽  
E Buffagni ◽  
...  

1996 ◽  
Vol 10 (22) ◽  
pp. 2781-2796 ◽  
Author(s):  
SOMA MUKHOPADHYAY ◽  
ASHOK CHATTERJEE

We use the Feynman–Haken path-integral formalism to obtain the polaronic correction to the ground state energy of an electron in a polar semiconductor quantum dot with parabolic confinement in both two and three dimensions. We perform calculations for the entire range of the electron–phonon coupling parameter and for arbitrary confinement length. We apply our results to several semiconductor quantum dots and show that the polaronic effect in some of these dots can be considerably large if the dot sizes are made smaller than a few nanometers.


2004 ◽  
Vol 818 ◽  
Author(s):  
Vladimir A. Fonoberov ◽  
Alexander A. Balandin

AbstractWe have investigated exciton states in wurtzite GaN/AlN and ZnO quantum dots. A strong piezoelectric field in GaN/AlN quantum dots is found to tilt conduction and valence bands, thus pushing the electron to the top and the hole to the bottom of the GaN/AlN quantum dot. As a result, the exciton ground state energy in GaN/AlN quantum dots with heights larger than 3 nm exhibits a red shift with respect to bulk GaN energy gap. It is shown that the radiative decay time in GaN/AlN quantum dots is large and increases from 0.3 ns for quantum dots with height 1.5 nm to 1.1×103 ns for the quantum dots with height 4.5 nm. On the contrary, the electron and the hole are not separated in ZnO quantum dots. Moreover, a relatively thick “dead layer” is formed near the surface of ZnO quantum dots. As a result, the radiative decay time in ZnO quantum dots is small and decreases from 73 ps for quantum dots with diameter 1.5 nm to 29 ps for the quantum dots with diameter 6 nm.


2010 ◽  
Author(s):  
J. Ehehalt ◽  
C. Neugirg ◽  
R. Schuster ◽  
D. Schuh ◽  
W. Wegscheider ◽  
...  

2004 ◽  
Vol 832 ◽  
Author(s):  
Dan Zhi ◽  
Paul A. Midgley ◽  
Rafal E. Dunin-Borkowski ◽  
Bruce A. Joyce ◽  
Don W. Pashley ◽  
...  

ABSTRACTThe formation of self-assembled quantum dots (QD) is of increasing interest for applications in optical, nanoelectronic, biological and quantum computing systems. From the perspective of fabrication technology, there are great advantages if the whole device can be made using a single Si substrate. Furthermore, GeSi is a model semiconductor system for fundamental studies of growth and material properties. In practice, as the MBE growth of heterostructures is inherently a non-equilibrium process, the formation of self-assembled nanostructures is both complex and sensitive to growth and overgrowth conditions. The morphology, structure and composition of QDs can all change during growth. It is therefore crucial to understand their structures at different stages of growth at the atomic scale. Here, the characterization of QD growth using high-resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) imaging is presented. Both the formation of uncapped QDs and the effect of the encapsulation are investigated, and the morphological and compositional evolution of the QDs and wetting layers are observed directly at the atomic scale for the first time. During encapsulation, the Ge content in the centres of the QD remains unchanged, despite significant intermixing, lateral spreading and a laterally inhomogeneous Ge distribution inside the Ge QD. The initial non-uniform wetting layer for the uncapped Ge QD becomes uniform after encapsulation, and a 3-monolayer-thick core with ∼ 60% Ge content is formed in the 2 nm-thick wetting layer with an average Ge content of ∼ 30%. The results were obtained by direct analysis of the Z-contrast STEM imaging without involving complex image simulations.


1999 ◽  
Vol 583 ◽  
Author(s):  
Hitoshi Nakamura ◽  
Shigeru Kohmoto ◽  
Tomonori Ishikawa ◽  
Kiyoshi Asakawa

AbstractWe propose a novel site-control technique for strained quantum dots (QDs) based on nano-lithography using an STM integrated into a UHV STM/MBE multi-chamber system. A nano-scale deposit was formed on a GaAs surface by applying voltage between the GaAs surface and the tungsten tip of the STM. Since the deposit acted as a nano-mask, the subsequent GaAs growth formed a nano-hole just above the deposit. Subsequent InAs supply produced a QD on the hole site, and no QD was observed in any undesirable regions. We also observed the QD formation processes involved in the technique, based on step-by-step STM observations of the QD formation process. The observation directly revealed an InAs wetting layer formation with 1-ML thickness on the GaAs terraces followed by the QD formation in the Stranski-Krastanow growth mode.


Sign in / Sign up

Export Citation Format

Share Document