Basis set superposition error in MP2 and density-functional theory: A case of methane-nitric oxide association

2005 ◽  
Vol 123 (13) ◽  
pp. 134107 ◽  
Author(s):  
Rachel Crespo-Otero ◽  
Luis Alberto Montero ◽  
Wolf-Dieter Stohrer ◽  
José M. García de la Vega
1998 ◽  
Vol 63 (8) ◽  
pp. 1223-1244 ◽  
Author(s):  
Cordula Rauwolf ◽  
Achim Mehlhorn ◽  
Jürgen Fabian

Weak interactions between organic donor and acceptor molecules resulting in cofacially-stacked aggregates ("CT complexes") were studied by second-order many-body perturbation theory (MP2) and by gradient-corrected hybrid Hartree-Fock/density functional theory (B3LYP exchange-correlation functional). The complexes consist of tetrathiafulvalene (TTF) and related compounds and tetracyanoethylene (TCNE). Density functional theory (DFT) and MP2 molecular equilibrium geometries of the component structures are calculated by means of 6-31G*, 6-31G*(0.25), 6-31++G**, 6-31++G(3df,2p) and 6-311G** basis sets. Reliable molecular geometries are obtained for the donor and acceptor compounds considered. The geometries of the compounds were kept frozen in optimizing aggregate structures with respect to the intermolecular distance. The basis set superposition error (BSSE) was considered (counterpoise correction). According to the DFT and MP2 calculations laterally-displaced stacks are more stable than vertical stacks. The charge transfer from the donor to the acceptor is small in the ground state of the isolated complexes. The cp-corrected binding energies of TTF/TCNE amount to -1.7 and -6.3 kcal/mol at the DFT(B3LYP) and MP2(frozen) level of theory, respectively (6-31G* basis set). Larger binding energies were obtained by Hobza's 6-31G*(0.25) basis set. The larger MP2 binding energies suggest that the dispersion energy is underestimated or not considered by the B3LYP functional. The energy increases when S in TTF/TCNE is replaced by O or NH but decreases with substitution by Se. The charge-transferred complexes in the triplet state are favored in the vertical arrangement. Self-consistent-reaction-field (SCRF) calculations predicted a gain in binding energy with solvation for the ground-state complex. The ground-state charge transfer between the components is increased up to 0.8 e in polar solvents.


2005 ◽  
Vol 04 (03) ◽  
pp. 377-388 ◽  
Author(s):  
V. NIRMALA ◽  
P. KOLANDAIVEL

Density functional theory and Møller–Plesset perturbation theory methods have been used to study the ring clusters of ( BN )n=1–10 employing 6-311++G** basis set. The binding energies have been corrected for the basis set superposition error (BSSE). Static polarizability of these ring clusters has been investigated. A simple expression for the size dependence of polarizability has been invoked, so that the same relation can be useful for predicting the polarizability of larger clusters. The topological properties were analyzed employing the Bader's atoms in molecules theory. A good correlation between the structural parameters and the properties of electron density is found. Localization and delocalization indices were also used for the analysis of molecular electronic structure by an electron pair perspective. The contribution of stereo electronic interactions to the molecular properties as a function of ring size is analyzed based on the natural bond orbital (NBO) analysis.


2013 ◽  
Vol 117 (38) ◽  
pp. 9282-9292 ◽  
Author(s):  
Jan Gerit Brandenburg ◽  
Maristella Alessio ◽  
Bartolomeo Civalleri ◽  
Michael F. Peintinger ◽  
Thomas Bredow ◽  
...  

2019 ◽  
Vol 49 (4) ◽  
pp. 241-248
Author(s):  
Hongchen Du ◽  
Y. Liu ◽  
J. Liu

Density Functional Theory (DFT) and dispersion-corrected density functional theory (DFT-D) were used to study the intermolecular interactions of 1,1-diamino-2,2-dinitroethylene FOX-7/NH3and FOX-7/H2O supermolecules. The geometries optimized from DFT and DFT-D methods are similar.Six optimized supermolecules were characterized to be local energy minima on potential energy surfaces without imaginary frequencies. The intermolecular interaction energy (binding energy) was calculated with basis set superposition error (BSSE) correction. The largest corrected intermolecular interaction energy is FOX-7/NH3 (-43.76 kJ×mol-1), indicating that the interaction between FOX-7 and NH3 is stronger than that of FOX-7/H2O. The same conclusion is obtained from the studies on the infrared spectrum and frontier orbitals.


2019 ◽  
Author(s):  
Kamal Batra ◽  
Stefan Zahn ◽  
Thomas Heine

<p>We thoroughly benchmark time-dependent density- functional theory for the predictive calculation of UV/Vis spectra of porphyrin derivatives. With the aim to provide an approach that is computationally feasible for large-scale applications such as biological systems or molecular framework materials, albeit performing with high accuracy for the Q-bands, we compare the results given by various computational protocols, including basis sets, density-functionals (including gradient corrected local functionals, hybrids, double hybrids and range-separated functionals), and various variants of time-dependent density-functional theory, including the simplified Tamm-Dancoff approximation. An excellent choice for these calculations is the range-separated functional CAM-B3LYP in combination with the simplified Tamm-Dancoff approximation and a basis set of double-ζ quality def2-SVP (mean absolute error [MAE] of ~0.05 eV). This is not surpassed by more expensive approaches, not even by double hybrid functionals, and solely systematic excitation energy scaling slightly improves the results (MAE ~0.04 eV). </p>


1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


Author(s):  
Kenta Kuroishi ◽  
Muhammad Rifqi Al Fauzan ◽  
Ngoc Thanh Pham ◽  
Yuelin Wang ◽  
Yuji Hamamoto ◽  
...  

The reaction of nitric oxide (NO) on Cu(100) is studied by scanning tunneling microscope, electron energy loss spectroscopy and density functional theory calculations. The NO molecules adsorb mainly as monomers...


Sign in / Sign up

Export Citation Format

Share Document