scholarly journals THEORETICAL STUDY ON THE INTERMOLECULAR INTERACTIONS OF 1,1-DIAMINO-2,2-DINITROETHYLENE WITH NH3 AND H2O

2019 ◽  
Vol 49 (4) ◽  
pp. 241-248
Author(s):  
Hongchen Du ◽  
Y. Liu ◽  
J. Liu

Density Functional Theory (DFT) and dispersion-corrected density functional theory (DFT-D) were used to study the intermolecular interactions of 1,1-diamino-2,2-dinitroethylene FOX-7/NH3and FOX-7/H2O supermolecules. The geometries optimized from DFT and DFT-D methods are similar.Six optimized supermolecules were characterized to be local energy minima on potential energy surfaces without imaginary frequencies. The intermolecular interaction energy (binding energy) was calculated with basis set superposition error (BSSE) correction. The largest corrected intermolecular interaction energy is FOX-7/NH3 (-43.76 kJ×mol-1), indicating that the interaction between FOX-7 and NH3 is stronger than that of FOX-7/H2O. The same conclusion is obtained from the studies on the infrared spectrum and frontier orbitals.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5487
Author(s):  
Rodrigo A. Lemos Silva ◽  
Demetrio A. da Silva Filho ◽  
Megan E. Moberg ◽  
Ted M. Pappenfus ◽  
Daron E. Janzen

X-ray structural determinations and computational studies were used to investigate halogen interactions in two halogenated oxindoles. Comparative analyses of the interaction energy and the interaction properties were carried out for Br···Br, C-H···Br, C-H···O and N-H···O interactions. Employing Møller–Plesset second-order perturbation theory (MP2) and density functional theory (DFT), the basis set superposition error (BSSE) corrected interaction energy (Eint(BSSE)) was determined using a supramolecular approach. The Eint(BSSE) results were compared with interaction energies obtained by Quantum Theory of Atoms in Molecules (QTAIM)-based methods. Reduced Density Gradient (RDG), QTAIM and Natural bond orbital (NBO) calculations provided insight into possible pathways for the intermolecular interactions examined. Comparative analysis employing the electron density at the bond critical points (BCP) and molecular electrostatic potential (MEP) showed that the interaction energies and the relative orientations of the monomers in the dimers may in part be understood in light of charge redistribution in these two compounds.


1998 ◽  
Vol 63 (8) ◽  
pp. 1223-1244 ◽  
Author(s):  
Cordula Rauwolf ◽  
Achim Mehlhorn ◽  
Jürgen Fabian

Weak interactions between organic donor and acceptor molecules resulting in cofacially-stacked aggregates ("CT complexes") were studied by second-order many-body perturbation theory (MP2) and by gradient-corrected hybrid Hartree-Fock/density functional theory (B3LYP exchange-correlation functional). The complexes consist of tetrathiafulvalene (TTF) and related compounds and tetracyanoethylene (TCNE). Density functional theory (DFT) and MP2 molecular equilibrium geometries of the component structures are calculated by means of 6-31G*, 6-31G*(0.25), 6-31++G**, 6-31++G(3df,2p) and 6-311G** basis sets. Reliable molecular geometries are obtained for the donor and acceptor compounds considered. The geometries of the compounds were kept frozen in optimizing aggregate structures with respect to the intermolecular distance. The basis set superposition error (BSSE) was considered (counterpoise correction). According to the DFT and MP2 calculations laterally-displaced stacks are more stable than vertical stacks. The charge transfer from the donor to the acceptor is small in the ground state of the isolated complexes. The cp-corrected binding energies of TTF/TCNE amount to -1.7 and -6.3 kcal/mol at the DFT(B3LYP) and MP2(frozen) level of theory, respectively (6-31G* basis set). Larger binding energies were obtained by Hobza's 6-31G*(0.25) basis set. The larger MP2 binding energies suggest that the dispersion energy is underestimated or not considered by the B3LYP functional. The energy increases when S in TTF/TCNE is replaced by O or NH but decreases with substitution by Se. The charge-transferred complexes in the triplet state are favored in the vertical arrangement. Self-consistent-reaction-field (SCRF) calculations predicted a gain in binding energy with solvation for the ground-state complex. The ground-state charge transfer between the components is increased up to 0.8 e in polar solvents.


2006 ◽  
Vol 05 (02) ◽  
pp. 187-196 ◽  
Author(s):  
JINSHAN LI

Possible HF tetramer geometries have been optimized employing the density functional B3LYP method and the aug-cc-pVQZ basis set. Deformation energy has been calculated at the B3LYP/aug-cc-pVQZ level. After the BSSE correction with the CP method, two-body intermolecular interaction energy, three-body nonadditive intermolecular interaction energy, and four-body nonadditive intermolecular interaction energy (Δ E c[4]) have been obtained at the levels of B3LYP/aug-cc–pVQZ, B3LYP/aug-cc-pVTZ//B3LYP/aug-cc-pVQZ, and MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVQZ. Calculated results show that the three-body nonadditive intermolecular interaction energy is important for the optimized structures of HF tetramer. At the MP2/aug-cc-pVTZ//B3LYP/aug-cc-pVQZ level, the four-body nonadditive intermolecular interaction strength arrives at -4.5kJ/mol in the optimized eight-membered ring structure, but is extremely weak in other optimized structures. The comparison between MP2 and B3LYP calculated intermolecular interaction energies shows that the B3LYP method is applicable to the calculation of the intermolecular interaction energy of HF tetramer when the basis set reaches aug-cc-pVTZ. ΔEc[4] occupies 8–32% of the total intermolecular interaction energy when the intermolecular distances of the eight-membered ring structure are in the range of 1.06–1.37 Å.


2005 ◽  
Vol 123 (13) ◽  
pp. 134107 ◽  
Author(s):  
Rachel Crespo-Otero ◽  
Luis Alberto Montero ◽  
Wolf-Dieter Stohrer ◽  
José M. García de la Vega

2005 ◽  
Vol 04 (03) ◽  
pp. 377-388 ◽  
Author(s):  
V. NIRMALA ◽  
P. KOLANDAIVEL

Density functional theory and Møller–Plesset perturbation theory methods have been used to study the ring clusters of ( BN )n=1–10 employing 6-311++G** basis set. The binding energies have been corrected for the basis set superposition error (BSSE). Static polarizability of these ring clusters has been investigated. A simple expression for the size dependence of polarizability has been invoked, so that the same relation can be useful for predicting the polarizability of larger clusters. The topological properties were analyzed employing the Bader's atoms in molecules theory. A good correlation between the structural parameters and the properties of electron density is found. Localization and delocalization indices were also used for the analysis of molecular electronic structure by an electron pair perspective. The contribution of stereo electronic interactions to the molecular properties as a function of ring size is analyzed based on the natural bond orbital (NBO) analysis.


2013 ◽  
Vol 117 (38) ◽  
pp. 9282-9292 ◽  
Author(s):  
Jan Gerit Brandenburg ◽  
Maristella Alessio ◽  
Bartolomeo Civalleri ◽  
Michael F. Peintinger ◽  
Thomas Bredow ◽  
...  

2005 ◽  
Vol 04 (03) ◽  
pp. 849-856 ◽  
Author(s):  
GUO-YONG FANG ◽  
LI-NA XU ◽  
XIN-GEN HU ◽  
XIN-HUA LI ◽  
HE-MING XIAO ◽  
...  

Three fully optimized geometries of 3-nitro-1,2,4-triazol-5-one (NTO)-H2O complexes have been obtained with density function theory (DFT) method at the B3LYP/6-311++G** level. The intermolecular interaction energy is calculated with zero point energy (ZPE) correction and basis set superposition error (BSSE) correction. The greatest corrected intermolecular interaction of the NTO–H2O complexes is -30.14 KJ/mol. Electrons in complex systems transfer from H2O to NTO . The strong hydrogen bonds contribute to the interaction energies dominantly. Natural bond orbital (NBO) analysis is performed to reveal the origin of the interaction. Based on the vibrational analysis, the changes of thermodynamic properties from the monomer to complexes with the temperature ranging from 200 K to 800 K have been obtained using the statistical thermodynamic method. It is found that three NTO –water complexes can be produced spontaneously from NTO and H2O at lower temperature.


Sign in / Sign up

Export Citation Format

Share Document