About the calculation of exchange coupling constants using density-functional theory: The role of the self-interaction error

2005 ◽  
Vol 123 (16) ◽  
pp. 164110 ◽  
Author(s):  
Eliseo Ruiz ◽  
Santiago Alvarez ◽  
Joan Cano ◽  
Víctor Polo
2019 ◽  
Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of J-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Project model provides an affordable and practical approach for effectively correcting spin-contamination errors in molecular exchange coupling constant and spin crossover gap calculations.


2006 ◽  
Vol 978 ◽  
Author(s):  
Michel Bockstedte

AbstractThe modeling of atomistic processes in semiconductors based on the density functional theory is outlined. The role of intrinsic defects in the self and dopant diffusion, as well as in the dopant activation is investigated for the case of silicon carbide. A hierarchy of annealing mechanisms for vacancies and interstitials is proposed. The identification of the microscopic origin of experimental defect centers by calculated defect signatures establishes a link between theoretical modeling and experiments.


2013 ◽  
Vol 91 (9) ◽  
pp. 866-871 ◽  
Author(s):  
Silvia Gómez-Coca ◽  
Eliseo Ruiz

The exchange coupling constants of a Mn14 complex constituted by two weakly coupled Mn7 moieties were calculated using two different density functional theory (DFT) approaches: the Perdew–Burke–Ernzerhof (PBE) functional with a numerical basis set and the hybrid Becke, three-parameter Lee–Yang–Parr (B3LYP) functional employed with a Gaussian basis set. The sign and relative strength of the exchange coupling constants calculated with both methods were consistent; as expected, the values calculated with the PBE functional were slightly overestimated, as corroborated by comparison with the experimental magnetic susceptibility curve. Both methods gave a ground spin configuration of S = 3/2 for the Mn7 moiety, which was weakly antiferromagnetically coupled with the other Mn7 fragment, leading to an S = 0 ground spin configuration for the entire Mn14 complex.


2019 ◽  
Author(s):  
Xianghai Sheng ◽  
Lee Thompson ◽  
Hrant Hratchian

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the Approximate Projection model. Results show that improvements using the Approximate Projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin-projection generally improves the quality of density functional theory calculations of $J$-coupling constants and spin crossover gaps. Furthermore, it is shown that spin-projection can be important for both geometry optimization and energy evaluations. The Approximate Projection model provides an affordable and practical approach for effectively correcting spin-contamination errors in such calculations.


Sign in / Sign up

Export Citation Format

Share Document