Equation of state of nitrogen (N2) at high pressures and high temperatures: Molecular dynamics simulation

2006 ◽  
Vol 124 (13) ◽  
pp. 134501 ◽  
Author(s):  
Stanisław Krukowski ◽  
Paweł Strąk
2014 ◽  
Vol 553 ◽  
pp. 35-40
Author(s):  
Leyla Ramin ◽  
Ahmad Jabbarzadeh

Molecular dynamics simulation was used to study the effect of pressure on self-assembled monolayers (SAM) of n-alkanethiols [(CH3(CH2) n-1, n=14, 15] on Au (111) for dry systems and in the presence of water. The stress-strain behavior and effects of compression on structural characteristics under various normal pressures have been investigated. We found the effect of compression on tilt and tilt orientation angles for dry and hydrated SAM system. Furthermore, a comparison of the results obtained for tilt and tilt orientation angles for hydrated C14 and C15 indicates a more stable structure for C15 (an odd system) under high pressures. We also found excellent elastic recovery of SAM monolayers with and without water is evidence of their exceptional potential to be used under compression in various conditions. Young’s moduli are calculated for various systems under uniaxial compression.


2012 ◽  
Vol 3 ◽  
pp. 586-588 ◽  
Author(s):  
Saurav Goel ◽  
Alexander Stukowski ◽  
Gaurav Goel ◽  
Xichun Luo ◽  
Robert L Reuben

Recent molecular dynamics simulation results have increased conceptual understanding of the grazing and the ploughing friction at elevated temperatures, particularly near the substrate’s melting point. In this commentary we address a major constraint concerning its experimental verification.


Sign in / Sign up

Export Citation Format

Share Document