scholarly journals Multiplicity Difference between Heavy and Light Quark Jets Revisited

2006 ◽  
Author(s):  
Fabrizio Fabbri
Keyword(s):  
2001 ◽  
Vol 16 (supp01a) ◽  
pp. 226-228 ◽  
Author(s):  
◽  
Hyejoo Kang

We present measurements of identified charged hadron production over a wide momentum range using the SLD Cherenkov Ring Imaging Detector. In addition to studying flavor-inclusive Z0 decays, we compare particle production in decays into light, c and b flavors and compare production in gluon jets with that in light quark jets, where the jet flavors are selected using precision vertex information.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Aruna Kumar Nayak ◽  
Santosh Kumar Rai ◽  
Tousik Samui

AbstractThe search for new physics at high energy accelerators has been at the crossroads with very little hint of signals suggesting otherwise. The challenges at a hadronic machine such as the LHC is compounded by the fact that final states are swamped with jets which one needs to understand and unravel. A positive step in this direction would be to separate the jets in terms of their gluonic and quark identities, much in a similar spirit of distinguishing heavy quark jets from light quark jets that has helped in improving searches for both neutral and charged Higgs bosons at the LHC. In this work, we utilise this information using the jet substructure techniques to comment on possible improvements in sensitivity as well as discrimination of new resonances in the all hadronic mode that would be crucial in pinning down new physics signals at HL-LHC, HE-LHC and any future 100 TeV hadron collider.


2006 ◽  
Vol 46 (6) ◽  
pp. 1017-1022 ◽  
Author(s):  
Gao Ying-Jia ◽  
Zhang Yu-Jie ◽  
Chao Kuang-Ta

2005 ◽  
Vol 45 (2) ◽  
pp. 387-400 ◽  
Author(s):  
Yu L. Dokshitzer ◽  
F. Fabbri ◽  
V. A. Khoze ◽  
W. Ochs
Keyword(s):  

1999 ◽  
Vol 30 (1) ◽  
pp. 1
Author(s):  
O. A. Zaı̆midoroga
Keyword(s):  

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Luke Gayer ◽  
Nicolas Lang ◽  
Sinéad M. Ryan ◽  
David Tims ◽  
Christopher E. Thomas ◽  
...  

Abstract Isospin-1/2 Dπ scattering amplitudes are computed using lattice QCD, working in a single volume of approximately (3.6 fm)3 and with a light quark mass corresponding to mπ ≈ 239 MeV. The spectrum of the elastic Dπ energy region is computed yielding 20 energy levels. Using the Lüscher finite-volume quantisation condition, these energies are translated into constraints on the infinite-volume scattering amplitudes and hence enable us to map out the energy dependence of elastic Dπ scattering. By analytically continuing a range of scattering amplitudes, a $$ {D}_0^{\ast } $$ D 0 ∗ resonance pole is consistently found strongly coupled to the S-wave Dπ channel, with a mass m ≈ 2200 MeV and a width Γ ≈ 400 MeV. Combined with earlier work investigating the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , and $$ {D}_0^{\ast } $$ D 0 ∗ with heavier light quarks, similar couplings between each of these scalar states and their relevant meson-meson scattering channels are determined. The mass of the $$ {D}_0^{\ast } $$ D 0 ∗ is consistently found well below that of the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , in contrast to the currently reported experimental result.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Michael Spannowsky

Abstract Ensemble learning is a technique where multiple component learners are combined through a protocol. We propose an Ensemble Neural Network (ENN) that uses the combined latent-feature space of multiple neural network classifiers to improve the representation of the network hypothesis. We apply this approach to construct an ENN from Convolutional and Recurrent Neural Networks to discriminate top-quark jets from QCD jets. Such ENN provides the flexibility to improve the classification beyond simple prediction combining methods by linking different sources of error correlations, hence improving the representation between data and hypothesis. In combination with Bayesian techniques, we show that it can reduce epistemic uncertainties and the entropy of the hypothesis by simultaneously exploiting various kinematic correlations of the system, which also makes the network less susceptible to a limitation in training sample size.


2021 ◽  
Vol 103 (5) ◽  
Author(s):  
Matteo Becchetti ◽  
Roberto Bonciani ◽  
Vittorio Del Duca ◽  
Valentin Hirschi ◽  
Francesco Moriello ◽  
...  

2018 ◽  
Vol 175 ◽  
pp. 13008 ◽  
Author(s):  
Yuzhi Liu ◽  
Jon A. Bailey ◽  
A. Bazavov ◽  
C. Bernard ◽  
C. M. Bouchard ◽  
...  

Using the MILC 2+1 flavor asqtad quark action ensembles, we are calculating the form factors f0 and f+ for the semileptonic Bs → Kℓv decay. A total of six ensembles with lattice spacing from ≈ 0.12 to 0.06 fm are being used. At the coarsest and finest lattice spacings, the light quark mass m’l is one-tenth the strange quark mass m’s. At the intermediate lattice spacing, the ratio m’l/m’s ranges from 0.05 to 0.2. The valence b quark is treated using the Sheikholeslami-Wohlert Wilson-clover action with the Fermilab interpretation. The other valence quarks use the asqtad action. When combined with (future) measurements from the LHCb and Belle II experiments, these calculations will provide an alternate determination of the CKM matrix element |Vub|.


Sign in / Sign up

Export Citation Format

Share Document