In situ observation of ordering process in FePt films during annealing in a transmission electron microscope

2006 ◽  
Vol 99 (12) ◽  
pp. 123905 ◽  
Author(s):  
K. Kawai ◽  
S. Honda ◽  
M. Nawate ◽  
M. Komatsu ◽  
K. Kawabata
2016 ◽  
Vol 49 (5) ◽  
pp. 1645-1652 ◽  
Author(s):  
Wanneng Ye ◽  
Lingli Tang ◽  
Chaojing Lu ◽  
Huabing Li ◽  
Yichun Zhou

Five types of ferroelectric domain walls (DWs) are present in Bi4Ti3O12 single crystals (Ye et al., 2015). Here their motion was investigated in situ using transmission electron microscopy and optical microscopy. The motion of P (a)-90° DWs, P (a)-180° DWs and P (c)-180° DWs was observed through electron beam poling in a transmission electron microscope. The growth of new P s(a)-180° nanodomains was frequently seen and they tended to nucleate at preexisting P s(a)-90° DWs. Irregularly curved P (c)-180° DWs exhibit the highest mobility, while migration over a short range occurs occasionally for faceted P s(a)-90° DWs. In addition, the motion of P s(a)-90° DWs and the growth/annihilation of new needle-like P s(a)-90° domains in a 20 µm-thick crystal were observed under an external electric field on an optical microscope. Most of the new needle-like P s(a)-90° domains nucleate at preexisting P s(a)-90° DWs and the former are much smaller than the latter. This is very similar to the situation for P s(a)-180° domain switching induced by electron beam poling in a transmission electron microscope. Our observations suggest the energy hierarchy for different domains of P s(c)-180° ≤ P s(a)-180° ≤ P s(a)-90° ≤ new needle-like P s(a)-90° in ferroelectric Bi4Ti3O12.


2018 ◽  
Vol 24 (S1) ◽  
pp. 310-311
Author(s):  
U. Wolff ◽  
B. Ambrozic ◽  
K. Zuzek Rozman ◽  
K. Leistner ◽  
K. Nielsch ◽  
...  

2014 ◽  
Vol 20 (3) ◽  
pp. 715-722 ◽  
Author(s):  
Ute Golla-Schindler ◽  
Gerd Benner ◽  
Alexander Orchowski ◽  
Ute Kaiser

AbstractIt is demonstrated that energy-filtered transmission electron microscope enables following of in situ changes of the Ca-L2,3 edge which can originate from variations in both local symmetry and bond lengths. Low accelerating voltages of 20 and 40 kV slow down radiation damage effects and enable study of the start and finish of phase transformations. We observed electron beam-induced phase transformation of single crystalline calcite (CaCO3) to polycrystalline calcium oxide (CaO) which occurs in different stages. The coordination of Ca in calcite is close to an octahedral one streched along the <111> direction. Changes during phase transformation to an octahedral coordination of Ca in CaO go along with a bond length increase by 5 pm, where oxygen is preserved as a binding partner. Electron loss near-edge structure of the Ca-L2,3 edge show four separated peaks, which all shift toward lower energies during phase transformation at the same time the energy level splitting increases. We suggest that these changes can be mainly addressed to the change of the bond length on the order of picometers. An important pre-condition for such studies is stability of the energy drift in the range of meV over at least 1 h, which is achieved with the sub-Ångström low-voltage transmission electron microscope I prototype microscope.


Sign in / Sign up

Export Citation Format

Share Document