X-mode reflectometry measurements in the JET plasma core region

2006 ◽  
Vol 77 (10) ◽  
pp. 10E925 ◽  
Author(s):  
S. Hacquin ◽  
L. Meneses ◽  
L. Cupido ◽  
S. Sharapov ◽  
B. Alper ◽  
...  
Keyword(s):  
2018 ◽  
Vol 13 (0) ◽  
pp. 1402124-1402124
Author(s):  
Yasuo YOSHIMURA ◽  
Akira EJIRI ◽  
Ryosuke SEKI ◽  
Ryuichi SAKAMOTO ◽  
Kenichi NAGAOKA ◽  
...  

2020 ◽  
Vol 86 (3) ◽  
Author(s):  
Keiji Fujita ◽  
S. Satake ◽  
R. Kanno ◽  
M. Nunami ◽  
M. Nakata ◽  
...  

Recently, the validity range of the approximations commonly used in neoclassical calculation has been reconsidered. One of the primary motivations behind this trend is observation of an impurity hole in LHD (Large Helical Device), i.e. the formation of an extremely hollow density profile of an impurity ion species, such as carbon $\text{C}^{6+}$ , in the plasma core region where a negative radial electric field ( $E_{r}$ ) is expected to exist. Recent studies have shown that the variation of electrostatic potential on the flux surface, $\unicode[STIX]{x1D6F7}_{1}$ , has significant impact on neoclassical impurity transport. Nevertheless, the effect of $\unicode[STIX]{x1D6F7}_{1}$ has been studied with radially local codes and the necessity of global calculation has been suggested. Thus, we have extended a global neoclassical code, FORTEC-3D, to simulate impurity transport in an impurity hole plasma including $\unicode[STIX]{x1D6F7}_{1}$ globally. Independently of the $\unicode[STIX]{x1D6F7}_{1}$ effect, an electron root of the ambipolar condition for the impurity hole plasma has been found by global simulation. Hence, we have considered two different cases, each with a positive (global) and a negative (local) solution of the ambipolar condition, respectively. Our result provides another support that $\unicode[STIX]{x1D6F7}_{1}$ has non-negligible impact on impurity transport. However, for the ion-root case, the radial $\text{C}^{6+}$ flux is driven further inwardly by $\unicode[STIX]{x1D6F7}_{1}$ . For the electron-root case, on the other hand, the radial particle $\text{C}^{6+}$ flux is outwardly enhanced by $\unicode[STIX]{x1D6F7}_{1}$ . These results indicate that how $\unicode[STIX]{x1D6F7}_{1}$ affects the radial particle transport crucially depends on the profile of the ambipolar- $E_{r}$ , which is found to be susceptible to $\unicode[STIX]{x1D6F7}_{1}$ itself and the global effects.


2019 ◽  
Vol 622 ◽  
pp. A196 ◽  
Author(s):  
J.-Y. Kim ◽  
T. P. Krichbaum ◽  
A. P. Marscher ◽  
S. G. Jorstad ◽  
I. Agudo ◽  
...  

We report results from a deep polarization imaging of the nearby radio galaxy 3C 84 (NGC 1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86 GHz at an ultrahigh angular resolution of 50 μas (corresponding to ∼200Rs). We also add complementary multiwavelength data from the Very Long Baseline Array (VLBA; 15 and 43 GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0 and 343.5 GHz). At 86 GHz, we measured a fractional linear polarization of ∼2% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15 GHz (∼0.3−0.7% and <0.1%, respectively). This suggests an increasing linear polarization degree toward shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of ∼105–6 rad m2 in the core at ≳43 GHz. Moreover, the VLBA 43 GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.


2011 ◽  
Vol 51 (2) ◽  
pp. 023005 ◽  
Author(s):  
M. Goto ◽  
K. Sawada ◽  
K. Fujii ◽  
M. Hasuo ◽  
S. Morita

Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


1974 ◽  
Author(s):  
T. LATHAM ◽  
F. BIANCARDI ◽  
R. RODGERS
Keyword(s):  

2019 ◽  
Vol 23 (11n12) ◽  
pp. 1576-1586 ◽  
Author(s):  
Sara Pfister ◽  
Luca Sauser ◽  
Ilche Gjuroski ◽  
Julien Furrer ◽  
Martina Vermathen

The encapsulation of five derivatives of chlorin e6 with different hydrophobicity and aggregation properties into a series of five poloxamer-type triblock copolymer micelles (BCMs) with varying numbers of polyethylene and polypropylene glycol (PEG, PPG) units was monitored using 1H NMR spectroscopy. NMR chemical shift and line shape analysis, as well as dynamic methods including diffusion ordered spectroscopy (DOSY) and T1 and T2 relaxation time measurements of the chlorin and the polymer resonances, proved useful to assess the chlorin–BCM compatibility. The poloxamers had high capability to break up aggregates formed by chlorins up to intermediate hydrophobicity. Physically entrapped chlorins were always localized in the BCM core region. The loading capacity correlated with chlorin polarity for all poloxamers among which those with the lowest number of PPG units were most efficient. DOSY data revealed that relatively weakly aggregating chlorins partition between the aqueous bulk and micellar environment whereas more hydrophobic chlorins are well retained in the BCM core region, rendering these systems more stable. T1 and T2 relaxation time measurements indicated that motional freedom in the BCM core region contributes to encapsulation efficiency. The BCM corona dynamics were rather insensitive towards chlorin entrapment except for the poloxamers with short PEG chains. The presented data demonstrate that 1H NMR spectroscopy is a powerful complementary tool for probing the compatibility of porphyrinic compounds with polymeric carriers such as poloxamer BCMs, which is a prerequisite in the development of stable and highly efficient drug delivery systems suitable for medical applications like photodynamic therapy of tumors.


Sign in / Sign up

Export Citation Format

Share Document