ngc 1275
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 17)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Christopher S Reynolds ◽  
Robyn N Smith ◽  
Andrew C Fabian ◽  
Yasushi Fukazawa ◽  
Erin A Kara ◽  
...  

Abstract NGC 1275 is the Brightest Cluster Galaxy (BCG) in the Perseus cluster and hosts the active galactic nucleus (AGN) that is heating the central 100 kpc of the intracluster medium (ICM) atmosphere via a regulated feedback loop. Here we use a deep (490 ks) Cycle-19 Chandra High-Energy Transmission Grating (HETG) observation of NGC 1275 to study the anatomy of this AGN. The X-ray continuum is adequately described by an unabsorbed power-law with photon index Γ ≈ 1.9, creating strong tension with the detected column of molecular gas seen via HCN and HCO+ line absorption against the parsec-scale core/jet. This tension is resolved if we permit a composite X-ray source; allowing a column of $N_H\sim 8\times 10^{22}\hbox{${\rm \, cm}^{-2}\, $}$ to cover ∼15 per cent of the X-ray emitter does produce a significant improvement in the statistical quality of the spectral fit. We suggest that the dominant unabsorbed component corresponds to the accretion disk corona, and the sub-dominant X-ray component is the jet working surface and/or jet cocoon that is expanding into clumpy molecular gas. We suggest that this may be a common occurence in BCG-AGN. We conduct a search for photoionized absorbers/winds and fail to detect such a component, ruling out columns and ionization parameters often seen in many other Seyfert galaxies. We detect the 6.4 keV iron-Kα fluorescence line seen previously by XMM-Newton and Hitomi. We describe an analysis methodology which combines dispersive HETG spectra, non-dispersive microcalorimeter spectra, and sensitive XMM-Newton/EPIC spectra in order to constrain (sub)arcsec-scale extensions of the iron-Kα emission region.


2021 ◽  
Vol 906 (1) ◽  
pp. 30
Author(s):  
Fumiya Imazato ◽  
Yasushi Fukazawa ◽  
Mahito Sasada ◽  
Takanori Sakamoto
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Bryan Rithesh Miranda ◽  
Vijayakumar H Doddamani ◽  
Vedavathi P

In this paper, we present our results for the first time on long term emission-line and continuum variability studies using the International Ultraviolet Explorer’s final archive of UV spectroscopic data obtained in the wavelength region from 1150 Å to 3200 Å for NGC 1275, a dust dominated BL Lac characterized by the Rmax and  F-variance parameter. The UV continuum flux variability analysis presented in this paper covers more number of emission-line free continuum windows in the UV region centred at  1710 Å, 1800 Å, 2625 Å, 2875 Å & 3025 Å. We have obtained a higher value of Fvar  ~ 45 % at 1710 Å and a lower value of ~ 30 % at 1800 Å for the IUE's observational period of 1978 - 1989. The Lyα, C IV, C III] and Mg II emission lines have been observed as weaker line features on fewer occasions intermittently.


2020 ◽  
Vol 499 (4) ◽  
pp. 5791-5805
Author(s):  
M Gendron-Marsolais ◽  
J Hlavacek-Larrondo ◽  
R J van Weeren ◽  
L Rudnick ◽  
T E Clarke ◽  
...  

ABSTRACT We present the first high-resolution 230–470 MHz map of the Perseus cluster obtained with the Karl G. Jansky Very Large Array. The high dynamic range and resolution achieved have allowed the identification of previously unknown structures in this nearby galaxy cluster. New hints of sub-structures appear in the inner radio lobes of the brightest cluster galaxy NGC 1275. The spurs of radio emission extending into the outer X-ray cavities, inflated by past nuclear outbursts, are seen for the first time at these frequencies, consistent with spectral aging. Beyond NGC 1275, we also analyse complex radio sources harboured in the cluster. Two new distinct, narrowly collimated jets are visible in IC 310, consistent with a highly projected narrow-angle tail radio galaxy infalling into the cluster. We show how this is in agreement with its blazar-like behaviour, implying that blazars and bent-jet radio galaxies are not mutually exclusive. We report the presence of filamentary structures across the entire tail of NGC 1265, including two new pairs of long filaments in the faintest bent extension of the tail. Such filaments have been seen in other cluster radio sources such as relics and radio lobes, indicating that there may be a fundamental connection between all these radio structures. We resolve the very narrow and straight tail of CR 15 without indication of double jets, so that the interpretation of such head–tail sources is yet unclear. Finally, we note that only the brightest western parts of the mini-halo remain, near NGC 1272 and its bent double jets.


New Astronomy ◽  
2020 ◽  
Vol 80 ◽  
pp. 101402
Author(s):  
B. Ghosal ◽  
A. Tolamatti ◽  
K.K. Singh ◽  
K.K. Yadav ◽  
R.C. Rannot ◽  
...  
Keyword(s):  

Galaxies ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 63
Author(s):  
Varsha Chitnis ◽  
Amit Shukla ◽  
K. P. Singh ◽  
Jayashree Roy ◽  
Sudip Bhattacharyya ◽  
...  

Gamma-ray emission from the bright radio source 3C 84, associated with the Perseus cluster, is ascribed to the radio galaxy NGC 1275 residing at the centre of the cluster. Study of the correlated X-ray/gamma-ray emission from this active galaxy, and investigation of the possible disk-jet connection, are hampered because the X-ray emission, particularly in the soft X-ray band (2–10 keV), is overwhelmed by the cluster emission. Here we present a method to spectrally decouple the cluster and active galactic nucleus (AGN) emission in imaging X-ray detectors. We use three sets of simultaneous Niel Gehrels Swift XRT and NuStar data. These observations were made during the period 2015 November to 2017 February, when a huge increase in the gamma-ray emission was observed. We find that the gamma-ray emission shows a very high degree of variability (40%–50%) on time scales of 1–10 days, whereas the hard X-ray emission, associated with the AGN, shows a low variability (∼15%–30%), on various time scales in the range of 0.01–60 days.


2020 ◽  
Vol 496 (4) ◽  
pp. 4857-4873
Author(s):  
Rogemar A Riffel ◽  
Thaisa Storchi-Bergmann ◽  
Nadia L Zakamska ◽  
Rogério Riffel

ABSTRACT The role of feedback from active galactic nuclei (AGNs) in the evolution of galaxies is still not fully understood, mostly due to the lack of observational constraints in the multiphase gas kinematics on the 10–100 pc scales. We have used the Gemini Near-Infrared Integral Field Spectrograph (NIFS) to map the molecular and ionized gas kinematics in the inner 900 × 900 pc2 of the Seyfert galaxy NGC 1275 at a spatial resolution of ∼70 pc. From the fitting of the CO absorption bandheads in the K band, we derive a stellar velocity dispersion of 265 ± 26 km s−1, which implies a black hole mass of $M_{\rm SMBH}=1.1^{+0.9}_{-0.5}\times 10^9$ M⊙. We find hot (T ≳ 1000 K) molecular and ionized outflows with velocities of up to 2000 km s−1 and mass outflow rates of $2.7\times 10^{-2}$  and $1.6\, {\rm M_\odot }$ yr−1, respectively, in each of these gas phases. The kinetic power of the ionized outflows corresponds to only 0.05 per cent of the luminosity of the AGN of NGC 1275, indicating that they are not powerful enough to provide significant AGN feedback, but may be effective in redistributing the gas in the central region of the galaxy. The AGN-driven outflows seem to be responsible for the shocks necessary to produce the observed H2 and [Fe ii] line emission.


2020 ◽  
Vol 495 (1) ◽  
pp. L27-L31
Author(s):  
Jeffrey A Hodgson ◽  
Benjamin L’Huillier ◽  
Ioannis Liodakis ◽  
Sang-Sung Lee ◽  
Arman Shafieloo

ABSTRACT In this paper, we propose a new approach to determining cosmological distances to active Galactic nuclei (AGNs) via light travel-time arguments, which can be extended from nearby sources to very high redshift sources. The key assumption is that the variability seen in AGNs is constrained by the speed of light and therefore provides an estimate of the linear size of an emitting region. This can then be compared with the angular size measured with very long baseline interferometryer to derive a distance. We demonstrate this approach on a specific well-studied low-redshift (z = 0.0178) source 3C 84 (NGC 1275), which is the bright radio core of the Perseus Cluster. We derive an angular diameter distance including statistical errors of $D_{\mathrm{ A}} = 72^{+5}_{-6}$ Mpc for this source, which is consistent with other distance measurements at this redshift. Possible sources of systematic errors and ways to correct for them are discussed.


2020 ◽  
Vol 890 (1) ◽  
pp. 59 ◽  
Author(s):  
Christopher S. Reynolds ◽  
M. C. David Marsh ◽  
Helen R. Russell ◽  
Andrew C. Fabian ◽  
Robyn Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document