scholarly journals Atomistic simulation of structure and dynamics of columnar phases of hexabenzocoronene derivatives

2006 ◽  
Vol 125 (12) ◽  
pp. 124902 ◽  
Author(s):  
Denis Andrienko ◽  
Valentina Marcon ◽  
Kurt Kremer
1998 ◽  
Vol 538 ◽  
Author(s):  
W. Cai ◽  
V.V. Bulatov ◽  
J.F. Justo ◽  
S. Yip ◽  
A.S. Argon

AbstractThe theory of dislocation motion in materials with high Peierls stress relates dislocation mobility to the underlying kink mechanisms. While one has been able to describe certain qualitative features of dislocation behavior, important details of the atomic core mechanisms are lacking. We present a hybrid micro-meso approach to modeling the mobility of a single dislocation in Si in which the energetics of defect cores and kink mechanisms are treated by atomistic simulation, while dislocation motion under applied stress and at finite temperature is described through kinetic Monte Carlo. Three important aspects pertaining to treating the details of local structure and dynamics of kinks are incorporated in our approach: (1) Realistic complexity of (multiple) kink mechanisms in the dislocation core. (2) Full Peach-Koehler formalism for treatment of curved dislocation. (3) Detailed investigation of interaction between partials. This simulation methodology is used to calculate micron-scale dislocation mobility, with no adjustable parameters; specifically we obtain temperature and stress dependent velocity results that can be compared with experimental measurements.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


1998 ◽  
Vol 77 (2) ◽  
pp. 357-362 ◽  
Author(s):  
A. Matic, L. Borjesson

Author(s):  
V. D. Tereshchenko ◽  
E. B. Vasil'ev ◽  
O. F. Ogloblina ◽  
V. A. Tereshchenko ◽  
S. M. Chernyakov

Sign in / Sign up

Export Citation Format

Share Document