Dynamics of Dissociated Dislocations in SI: A Micro-Meso Simulation Methodology

1998 ◽  
Vol 538 ◽  
Author(s):  
W. Cai ◽  
V.V. Bulatov ◽  
J.F. Justo ◽  
S. Yip ◽  
A.S. Argon

AbstractThe theory of dislocation motion in materials with high Peierls stress relates dislocation mobility to the underlying kink mechanisms. While one has been able to describe certain qualitative features of dislocation behavior, important details of the atomic core mechanisms are lacking. We present a hybrid micro-meso approach to modeling the mobility of a single dislocation in Si in which the energetics of defect cores and kink mechanisms are treated by atomistic simulation, while dislocation motion under applied stress and at finite temperature is described through kinetic Monte Carlo. Three important aspects pertaining to treating the details of local structure and dynamics of kinks are incorporated in our approach: (1) Realistic complexity of (multiple) kink mechanisms in the dislocation core. (2) Full Peach-Koehler formalism for treatment of curved dislocation. (3) Detailed investigation of interaction between partials. This simulation methodology is used to calculate micron-scale dislocation mobility, with no adjustable parameters; specifically we obtain temperature and stress dependent velocity results that can be compared with experimental measurements.

1992 ◽  
Vol 291 ◽  
Author(s):  
Roberto Pasianot ◽  
Eduardo J. Savino ◽  
Zhao-Yang Xie ◽  
Diana Farkas

ABSTRACTFlexible boundary codes for the atomistic simulation of dislocations and other defects have been developed in the past mainly by Sinclair [1], Gehlen et al.[2], and Sinclair et al.[3]. These codes permitted the use of smaller atomic arrays than rigid boundary codes, gave descriptions of core non-linear effects and allowed fair assessments of the Peierls stress for dislocation motion. Green functions (continuum or discrete) or surface traction forces were used to relax the boundary atoms.A much simpler approach is followed here. Core and mobility effects at the boundary are accounted for by a dipole tensor centered at the dislocation line, whose components constitute six more parameters of the minimization process. Results are presented for [100] dislocations in NiAl. It is shown that, within the limitations of the technique, reliable values of the Peierls stress are obtained.


Author(s):  
Vasily Bulatov ◽  
Wei Cai

The PN model discussed in the preceding chapter is a continuum approach that requires some atomistic input to account for non-linear interactions in the dislocation core. In this chapter, we introduce yet another continuum model that uses atomistic input for a different purpose. The kinetic Monte Carlo (kMC) model does not consider any details of the core structure but instead focuses on dislocation motion on length and time scales far greater than those of the atomistic simulations. The model is especially effective for diamond-cubic semiconductors and other materials in which dislocation motion is too slow to be observed on the time scale of molecular dynamics simulations. The key idea of the kMC approach is to treat dislocation motion as a stochastic sequence of discrete rare events whose mechanisms and rates are computed within the framework of the transition state theory. Built around its unit mechanisms, the kMC model simulates dislocation motion and predicts dislocation velocity as a function of stress and temperature. This data then can be used to construct accurate mobility functions for dislocation dynamics simulations on still larger scales (Chapter 10). In this sense, kMC serves as a link between atomistic models and coarse-grained continuum models of dislocations. The kMC approach is most useful in situations where the system evolves through a stochastic sequence of events with only a few possible event types. The method has been used in a wide variety of applications other than dislocations. For example, the growth of solid thin films from vapor or in solution is known to proceed through attachment and diffusion of adatoms deposited on the surface. Based on a finite set of unit mechanisms of the motion of adatoms, kMC models accurately describe the kinetics of growth and the resulting morphology evolution of the epitaxial films [95, 96, 97]. Similar kMC models have been applied to dislocation motion in crystals with high lattice resistance, such as silicon. In these materials, dislocations consist of long straight segments interspersed with atomic-sized kinks, depicted schematically in Fig. 9.1(a) as short vertical segments. As was explained in Section 1.3, dislocation motion proceeds through nucleation and migration of kink pairs and can be described well by a kMC model.


1994 ◽  
Vol 364 ◽  
Author(s):  
C. Vailhe ◽  
D. Farkas

AbstractIn an effort to understand the deformation mechanism in high temperature B2 intermetallics, atomistic simulations were carried out for dislocation cores in a series of compounds exhibiting the B2 structure (FeAl, NiAl, CoAl). A comparison was made on the basis of core structures, dislocation splittings and Peierls stress values. The (110) and (112) γ surfaces were computed for these three compounds. The importance of the APB values and the maximum shear faults for explaining the dislocation behavior is discussed.


1994 ◽  
Vol 350 ◽  
Author(s):  
Kevin Ternes ◽  
Diana Farkas ◽  
Zhao-Yang Xie

AbstractTwo different interatomic potentials of the embedded atom type were used to study the relationships between dislocation core structure and mobility. Core structures were computed for a variety of dislocations in B2 NiAl. Several non-planar cores were studied as they reacted to applied stress and moved. The results show that in some cases, the dislocation core transforms to a planar structure before the dislocation glides, whereas in some other cases the core retains the non-planar structure at stresses sufficient to sustain glide. The effects of stoichiometry deviations on the core structure and motion were also studied.


1995 ◽  
Vol 408 ◽  
Author(s):  
Vijay B. Shenoy ◽  
Rob Phillips

AbstractThough atomistic simulation of 3D dislocation configurations is an important objective for the analysis of problems ranging from point defect condensation to the operation of Frank-Read sources such calculations pose new challenges. In particular, use of finite sized simulation cells produce additional stresses due to the presence of fixed boundaries in the far field which can contaminate the interpretation of these simulations. This paper discusses an approximate scheme for accounting for such boundary stresses, and is illustrated via consideration of the lattice resistance encountered by straight dislocations and simulations of 3D bow out of pinned dislocation segments. These results allow for a reevaluation of the concepts of the Peierls stress and the line tension from the atomistic perspective.


The response of the screw dislocation core in a body-centred cubic model lattice to a general applied stress tensor is examined by means of computer simulation. The Peierls stress is found to have the symmetry required by Neumann’s principle but is found also to have a very strong dependence on shear components of the applied stress which should not interact with the screw dislocation. Rather than having the constant value suggested by the Schmid law of critical resolved shear stress, the Peierls stress can vary from zero to the theoretical shear strength of the lattice, depending upon the exact nature of the critical applied stress components. Calculations with different interatomic binding potentials show that the Peierls stress variation, while different in detail, remains broadly the same, suggesting an origin in the dislocation core geometry rather than the specific charac­teristics of the force laws. Specialization to the case of uniaxial applied stress shows that the similar Peierls stress variation can nevertheless lead to quite different orientation dependences of the flow stress in different materials. Applications to the problem of brittle fracture and possible sources of the Peierls stress variation are discussed briefly.


1999 ◽  
Vol 86 (8) ◽  
pp. 4249-4257 ◽  
Author(s):  
João F. Justo ◽  
Vasily V. Bulatov ◽  
Sidney Yip

1995 ◽  
Vol 409 ◽  
Author(s):  
Vijay B. Shenoy ◽  
Rob Phillips

AbstractThough atomistic simulation of 3D dislocation configurations is an important objective for the analysis of problems ranging from point defect condensation to the operation of Frank-Read sources such calculations pose new challenges. In particular, use of finite sized simulation cells produce additional stresses due to the presence of fixed boundaries in the far field which can contaminate the interpretation of these simulations. This paper discusses an approximate scheme for accounting for such boundary stresses, and is illustrated via consideration of the lattice resistance encountered by straight dislocations and simulations of 3D bow out of pinned dislocation segments. These results allow for a reevaluation of the concepts of the Peierls stress and the line tension from the atomistic perspective.


Sign in / Sign up

Export Citation Format

Share Document