solar activity index
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 6 (2) ◽  
pp. 30-40
Author(s):  
Alexander Altyntsev ◽  
Sergey Lesovoi ◽  
Mariia Globa ◽  
Aleksey Gubin ◽  
Aleksey Kochanov ◽  
...  

The article discusses characteristics, fundamental and applied tasks of the Siberian Radioheliograph that is developed at the ISTP SB RAS Radio Astrophysical Observatory and spectropolarimetric complex that measures the total flux of solar radio emission. The multi-wave mapping of the Sun in the microwave range is a powerful and relatively inexpensive, in comparison with space technologies, means of observing solar activity processes and diagnosing plasma parameters. All-weather monitoring of electromagnetic solar emission (in the range from meter to millimeter waves, including measurements of the solar activity index at 2.8 GHz), and at the location of other diverse diagnostic facilities of the Heliogeophysical Complex, is of particular value. Radioheliograph data is necessary to develop and implement methods of short-term forecast of solar flares, measurements of kinematics and characteristics of coronal mass ejection plasma, forecast of characteristics of fast solar wind streams.


2020 ◽  
Vol 6 (2) ◽  
pp. 37-50
Author(s):  
Alexander Altyntsev ◽  
Sergey Lesovoi ◽  
Mariia Globa ◽  
Aleksey Gubin ◽  
Aleksey Kochanov ◽  
...  

The article discusses characteristics, fundamental and applied tasks of the Siberian Radioheliograph that is developed at the ISTP SB RAS Radio Astrophysical Observatory and spectropolarimetric complex that measures the total flux of solar radio emission. The multi-wave mapping of the Sun in the microwave range is a powerful and relatively inexpensive, in comparison with space technologies, means of observing solar activity processes and diagnosing plasma parameters. All-weather monitoring of electromagnetic solar emission (in the range from meter to millimeter waves, including measurements of the solar activity index at 2.8 GHz), and at the location of other diverse diagnostic facilities of the Heliogeophysical Complex, is of particular value. Radioheliograph data is necessary to develop and implement methods of short-term forecast of solar flares, measurements of kinematics and characteristics of coronal mass ejection plasma, forecast of characteristics of fast solar wind streams.


2019 ◽  
Author(s):  
Dmitry M. Sonechkin

Abstract. About 250 years ago L. Euler has derived a system of three quadratic-nonlinear differential equations to depict the rotation of the Earth as a rigid body. Neglecting a small distinction between the equatorial inertia moments, he reduced this system to much simpler linear one, and concluded that the Earth's pole must experience a harmonic oscillation of the 304-day period. Astronomers could not find this oscillation, but instead, S.C Chandler has found two powerful wobbles with the 12- and ~ 14-month periods in reality. Adhering to the Euler's linearization, astronomers can not explain the nature of the later wobble up to now. I indicate that the neglect by the above small distinction (“a small parameter” of the Euler's primary nonlinear equations) is not admissible because the effect of this parameter is singular. Analysing the primary equations by an asymptotic technique, I demonstrate that the Chandler wobble tones are formed from combinational harmonics of the Euler's 304-day oscillation, long-term Luni-Solar tides as well as the 22-year cycle of the heliomagnetic activity. Correlating simultaneous variations of the wobble and a solar activity index, I corroborate that the Chandler wobble is really affected by the Sun.


2018 ◽  
Vol 12 (4) ◽  
pp. 782-785 ◽  
Author(s):  
N. V. Chirik ◽  
M. V. Klimenko ◽  
A. T. Karpachev ◽  
K. G. Ratovskii ◽  
V. V. Klimenko ◽  
...  

2018 ◽  
Vol 4 (2) ◽  
pp. 58-62
Author(s):  
Александр Михалев ◽  
Aleksandr Mikhalev

Seasonal and interannual variations in the [OI] 630 nm atmospheric emission are studied from observations of airglow in Eastern Siberia. Among features of seasonal variation in this emission are a pronounced summer maximum, an autumn minimum, and a strong interannual variability in winter months, as well as an increase in the correlation coefficient with a monthly mean value of the F10.7 solar activity index in periods close to equinoxes. We identify possible causes and phenomena (including solar activity) that form the seasonal and interannual variations in the 630 nm atmospheric emission. In this study, we have used observational data from the Geophysical Observatory of the Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS, 52° N, 103° E) for 2011–2017.


2018 ◽  
Vol 4 (2) ◽  
pp. 96-101 ◽  
Author(s):  
Александр Михалев ◽  
Aleksandr Mikhalev

Seasonal and interannual variations in the [OI] 630 nm atmospheric emission are studied from observations of airglow in Eastern Siberia. Among features of seasonal variation in this emission are a pronounced summer maximum, an autumn minimum, and a strong interannual variability in winter months, as well as an increase in the correlation coefficient with a monthly mean value of the F10.7 solar activity index in periods close to equinoxes. We identify possible causes and phenomena (including solar activity) that form the seasonal and interannual variations in the 630 nm atmospheric emission. In this study, we have used observational data from the Geophysical Observatory of the Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS, 52° N, 103° E) for 2011–2017.


2018 ◽  
pp. 58-62 ◽  
Author(s):  
Александр Михалев ◽  
Aleksandr Mikhalev

Seasonal and interannual variations in the [OI] 630 nm atmospheric emission are studied from observations of airglow in Eastern Siberia. Among features of seasonal variation in this emission are a pronounced summer maximum, an autumn minimum, and a strong interannual variability in winter months, as well as an increase in the correlation coefficient with a monthly mean value of the F10.7 solar activity index in periods close to equinoxes. We identify possible causes and phenomena (including solar activity) that form the seasonal and interannual variations in the 630 nm atmospheric emission. In this study, we have used observational data from the Geophysical Observatory of the Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS, 52° N, 103° E) for 2011–2017.


Sign in / Sign up

Export Citation Format

Share Document