Phase diagram and surface tension of the hard-core attractive Yukawa model of variable range: Monte Carlo simulations

2007 ◽  
Vol 126 (22) ◽  
pp. 224510 ◽  
Author(s):  
Yurko Duda ◽  
Ascención Romero-Martínez ◽  
Pedro Orea
Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6100-6117 ◽  
Author(s):  
Guillaume Gueguen ◽  
Nicolas Destainville ◽  
Manoel Manghi

A quasi-spherical vesicle changes its shape to an oblate one at vanishing fluctuation surface tension.


2011 ◽  
Vol 172-174 ◽  
pp. 658-663 ◽  
Author(s):  
Mohamed Briki ◽  
Jérôme Creuze ◽  
Fabienne Berthier ◽  
Bernard Legrand

In order to build the phase diagram of Cu-Ag nanoalloys, we study a 405-atom nanoparticle by means of Monte Carlo simulations with relaxations usingN-body interatomic potentials. We focus on a range of nominal concentrations for which the cluster core remains Cu-pure and the (001) facets of the outer shell exhibit two original phenomena. Within the (N,mAg-mCu,P,T) ensemble, a structural and chemical bistability is observed, which affects all the (001) facets together. For a nanoparticle assembly, this will result in a bimodal distribution of clusters, some of them having their (001) facets Cu-rich with the usual square shape, the other ones having their (001) facets Ag-rich with a diamond shape. This bistability is replaced in the (NAg,NCu,P,T) ensemble by a continuous evolution of both the structure and the concentration of the (001) facets from Cu-rich square-shaped to Ag-rich diamond-shaped facets as the number of Ag atoms increases. For a nanoparticle assembly, this will result in an unimodal distribution of the cluster population concerning the properties of the (001) facets. This comparison between pseudo grand canonical and isothermal-isobaric results shows that the distribution of a population of bimetallic nanoparticles depends strongly on the conditions under it is elaborated.


2009 ◽  
Vol 20 (06) ◽  
pp. 967-978 ◽  
Author(s):  
XIONG WANG ◽  
RUI JIANG ◽  
KATSUHIRO NISHINARI ◽  
MAO-BIN HU ◽  
QING-SONG WU

Asymmetric exclusion processes (ASEP) on lattices with a junction, in which two or more parallel lattice branches combine into a single one, is important as a model for complex transport phenomena. This paper investigates the effect of unequal injection rates in ASEP with a junction. It is a generalization of the work of Pronina and Kolomeisky [J. Stat. Mech. P07010 (2005)], in which only equal injection rates are considered. It is shown that the unequal rates give rise to new phases and the phase diagram structure is qualitatively changed. The phase diagram and the density profiles are investigated by using Monte Carlo simulations, mean field approximation and domain wall approach. The analytical results are in good agreement with Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document