Conductivity type conversion in ion-milled p-HgCdTe:As heterostructures grown by molecular beam epitaxy

2007 ◽  
Vol 91 (13) ◽  
pp. 132106 ◽  
Author(s):  
I. I. Izhnin ◽  
S. A. Dvoretsky ◽  
N. N. Mikhailov ◽  
Yu. G. Sidorov ◽  
V. S. Varavin ◽  
...  
2010 ◽  
Vol 18 (3) ◽  
Author(s):  
M.M. Pociask

AbstractOf many techniques used to characterize quality of HgCdTe, ion milling is emerging as a unique means to reveal electrically active and neutral defects and complexes. Ion milling is capable of strongly affecting electrical properties of HgCdTe, up to conductivity type conversion in p-type material. It appears, that strongly non-equilibrium processes which take place under ion milling, when material is oversaturated with mercury interstitial atoms generated near a surface, lead to formation of specific defect complexes, which may not form under other type of treatment. By measuring parameters of a crystal before and after milling, and following disintegration of defects with time after ion milling (’relaxation’), one can detect and identify these defects. This method was applied to analyse different samples grown by molecular beam epitaxy.


2010 ◽  
Vol 8 (2) ◽  
pp. 282-284 ◽  
Author(s):  
E. Cruz-Hernández ◽  
D. Vázquez-Cortés ◽  
S. Shimomura ◽  
V. H. Méndez-García ◽  
M. López-López

1995 ◽  
Vol 67 (10) ◽  
pp. 1444-1446 ◽  
Author(s):  
N. Sakamoto ◽  
K. Hirakawa ◽  
T. Ikoma

Author(s):  
C.B. Carter ◽  
D.M. DeSimone ◽  
T. Griem ◽  
C.E.C. Wood

Molecular-beam epitaxy (MBE) is potentially an extremely valuable tool for growing III-V compounds. The value of the technique results partly from the ease with which controlled layers of precisely determined composition can be grown, and partly from the ability that it provides for growing accurately doped layers.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
S. H. Chen

Sn has been used extensively as an n-type dopant in GaAs grown by molecular-beam epitaxy (MBE). The surface accumulation of Sn during the growth of Sn-doped GaAs has been observed by several investigators. It is still not clear whether the accumulation of Sn is a kinetically hindered process, as proposed first by Wood and Joyce, or surface segregation due to thermodynamic factors. The proposed donor-incorporation mechanisms were based on experimental results from such techniques as secondary ion mass spectrometry, Auger electron spectroscopy, and C-V measurements. In the present study, electron microscopy was used in combination with cross-section specimen preparation. The information on the morphology and microstructure of the surface accumulation can be obtained in a fine scale and may confirm several suggestions from indirect experimental evidence in the previous studies.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


Sign in / Sign up

Export Citation Format

Share Document