Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes

2008 ◽  
Vol 128 (8) ◽  
pp. 084707 ◽  
Author(s):  
Bin Gao ◽  
Jun Jiang ◽  
ZiYu Wu ◽  
Yi Luo
2007 ◽  
Vol 561-565 ◽  
pp. 655-658 ◽  
Author(s):  
Qiang Zeng ◽  
Jennifer Luna ◽  
Y. Bayazitoglu ◽  
Kenneth Wilson ◽  
M. Ashraf Imam ◽  
...  

This study is considered as a method for producing multifunctional metal composite materials by using Single-walled Carbon Nanotubes (SWNTs). In this research, various metals (Ni, Cu, Ag ) were successfully deposited onto the surface of SWNTs. It has been found that homogenous dispersion and dense nucleation sites are the necessary conditions to form uniform coating on SWNTs. Functionalization has been applied to achieve considerable improvement in the dispersion of purified single-walled carbon nanotubes. A three-step electroless plating approach was used and the coating mechanism is described in the paper. The samples were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The application of coated SWNTs in Titanium will be discussed in this paper.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 818 ◽  
Author(s):  
Olga Sedelnikova ◽  
Olga Gurova ◽  
Anna Makarova ◽  
Anastasiya Fedorenko ◽  
Anton Nikolenko ◽  
...  

Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor–acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yuhua Xue ◽  
Hao Chen

Single walled carbon nanotubes (SWNTs) decorated with polyhedral oligomeric silsesquioxane (POSS) were synthesized via the amide linkages between the acid treated SWNTs and amine-functionalized POSS. The successful modification of SWNTs with POSS was confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectra. The resulting SWNTs-POSS can be dispersed in both water and organic solutions. The biocompatibility and cytotoxicity of the SWNTs and SWNTs-POSS were evaluated by CCK-8 viability assays, which indicated that SWNTs-POSS exhibit very extremely low toxicity. The low toxicity of the POSS modified SWNTs leads to more opportunities for using carbon nanotubes in biomedical fields.


2012 ◽  
Vol 11 (02) ◽  
pp. 1250022 ◽  
Author(s):  
SAMSON KHENE ◽  
TEBELLO NYOKONG

In this work nickel octadecylphthalocyanine (NiPc(C10H21)8) and cadmium telluride quantum dots (QDs) capped with thioglycolic acid (TGA) are adsorbed on single walled carbon nanotubes (SWCNT) to form NiPc(C10H21)8 -SWCNT-QDs conjugate. X-ray photoelectron, ultra violet/visible and Raman spectroscopies are used to characterize the conjugate. SWCNT, poly- Ni(O)Pc(C10H21)8 , NiPc(C10H21)8 -SWCNT and NiPc(C10H21)8 -SWCNT-QDs complexes are used to modify glassy carbon electrode (GCE) and used for the electro-oxidation of pentachlorophenol as a test molecule. NiPc(C10H21)8 -SWCNT-QDs electrode gave the best detection current for pentachlorophenol.


Sign in / Sign up

Export Citation Format

Share Document